|
3 | 3 | from numpy import radians, degrees, cos, arctan2 as atan2, tan, pi, ndarray, vectorize |
4 | 4 | except ImportError: |
5 | 5 | from math import radians, degrees, cos, atan2, tan, pi |
| 6 | + |
6 | 7 | vectorize = None |
7 | 8 | import typing |
8 | 9 | from .ellipsoid import Ellipsoid |
@@ -46,7 +47,9 @@ def meridian_arc(lat1: float, lat2: float, ell: Ellipsoid = None, deg: bool = Tr |
46 | 47 | return rsphere_rectifying(ell) * abs(rlat2 - rlat1) |
47 | 48 |
|
48 | 49 |
|
49 | | -def loxodrome_inverse(lat1: float, lon1: float, lat2: float, lon2: float, ell: Ellipsoid = None, deg: bool = True) -> typing.Tuple[float, float]: |
| 50 | +def loxodrome_inverse( |
| 51 | + lat1: float, lon1: float, lat2: float, lon2: float, ell: Ellipsoid = None, deg: bool = True |
| 52 | +) -> typing.Tuple[float, float]: |
50 | 53 | """ |
51 | 54 | computes the arc length and azimuth of the loxodrome |
52 | 55 | between two points on the surface of the reference ellipsoid |
@@ -98,7 +101,9 @@ def loxodrome_inverse(lat1: float, lon1: float, lat2: float, lon2: float, ell: E |
98 | 101 | return loxodrome_inverse_point(lat1, lon1, lat2, lon2, ell, deg) |
99 | 102 |
|
100 | 103 |
|
101 | | -def loxodrome_inverse_point(lat1: float, lon1: float, lat2: float, lon2: float, ell: Ellipsoid = None, deg: bool = True) -> typing.Tuple[float, float]: |
| 104 | +def loxodrome_inverse_point( |
| 105 | + lat1: float, lon1: float, lat2: float, lon2: float, ell: Ellipsoid = None, deg: bool = True |
| 106 | +) -> typing.Tuple[float, float]: |
102 | 107 | if deg: |
103 | 108 | lat1, lon1, lat2, lon2 = radians(lat1), radians(lon1), radians(lat2), radians(lon2) |
104 | 109 |
|
|
0 commit comments