|
| 1 | +--- |
| 2 | +title: Instrument AI Agents |
| 3 | +sidebar_order: 500 |
| 4 | +description: "Learn how to manually instrument your code to use Sentry's Agents module." |
| 5 | +--- |
| 6 | + |
| 7 | +As a prerequisite to setting up [AI Agents](/product/insights/agents/), you’ll need to first <PlatformLink to="/tracing/">set up tracing</PlatformLink>. Once this is done, the Python SDK will automatically instrument AI agents created with the `openai-agents` library. If that doesn't fit your use case, you can set up using custom instrumentation described below. |
| 8 | + |
| 9 | +## Custom Instrumentation |
| 10 | + |
| 11 | +For your AI agents data to show up in the Sentry Agents Insights Module a couple of different spans can be created. Those spans need to have well defined names and attributes. |
| 12 | + |
| 13 | +### Common Span Attributes |
| 14 | + |
| 15 | +Some attributes are common to all types of AI Agents spans: |
| 16 | + |
| 17 | +| Data Attribute | Type | Description | |
| 18 | +| :---------------------- | :----- | :----------------------------------------------------------------------------------- | |
| 19 | +| `gen_ai.system` | string | The Generative AI product as identified by the client or server instrumentation. [1] | |
| 20 | +| `gen_ai.request.model` | string | The name of the AI model a request is being made to. | |
| 21 | +| `gen_ai.operation.name` | string | The name of the operation being performed. [2] | |
| 22 | +| `gen_ai.agent.name` | string | The name of the agent this span belongs to. | |
| 23 | + |
| 24 | +**[1]** Well defined values for data attribute `gen_ai.system`: |
| 25 | + |
| 26 | +| Value | Description | |
| 27 | +| :---------------- | :-------------------------------- | |
| 28 | +| `anthropic` | Anthropic | |
| 29 | +| `aws.bedrock` | AWS Bedrock | |
| 30 | +| `az.ai.inference` | Azure AI Inference | |
| 31 | +| `az.ai.openai` | Azure OpenAI | |
| 32 | +| `cohere` | Cohere | |
| 33 | +| `deepseek` | DeepSeek | |
| 34 | +| `gcp.gemini` | Gemini | |
| 35 | +| `gcp.gen_ai` | Any Google generative AI endpoint | |
| 36 | +| `gcp.vertex_ai` | Vertex AI | |
| 37 | +| `groq` | Groq | |
| 38 | +| `ibm.watsonx.ai` | IBM Watsonx AI | |
| 39 | +| `mistral_ai` | Mistral AI | |
| 40 | +| `openai` | OpenAI | |
| 41 | +| `perplexity` | Perplexity | |
| 42 | +| `xai` | xAI | |
| 43 | + |
| 44 | +**[2]** Well defined values for data attribute `gen_ai.operation.name`: |
| 45 | + |
| 46 | +| Value | Description | |
| 47 | +| :----------------- | :---------------------------------------------------------------------- | |
| 48 | +| `chat` | Chat completion operation such as OpenAI Chat API | |
| 49 | +| `create_agent` | Create GenAI agent | |
| 50 | +| `embeddings` | Embeddings operation such as OpenAI Create embeddings API | |
| 51 | +| `execute_tool` | Execute a tool | |
| 52 | +| `generate_content` | Multimodal content generation operation such as Gemini Generate Content | |
| 53 | +| `invoke_agent` | Invoke GenAI agent | |
| 54 | + |
| 55 | +### Invoke Agent Span |
| 56 | + |
| 57 | +This span wraps one invocation of an agent. |
| 58 | + |
| 59 | +- `span.op` = `"gen_ai.invoke_agent"` |
| 60 | +- `span.name` = `"gen_ai.invoke_agent {gen_ai.agent.name}"` (Example: `"gen_ai.invoke_agent Weather Forecast Agent"`) |
| 61 | + |
| 62 | +- Span attributes: |
| 63 | + - `gen_ai.request.model`: The model that is used. |
| 64 | + - `gen_ai.request.available_tools`: An array of objects that describe the tools available to the agent. |
| 65 | + - `gen_ai.request.frequency_penalty`: Model configuration |
| 66 | + - `gen_ai.request.max_tokens`: Model configuration |
| 67 | + - `gen_ai.request.presence_penalty`: Model configuration |
| 68 | + - `gen_ai.request.temperature`: Model configuration |
| 69 | + - `gen_ai.request.top_p`: Model configuration |
| 70 | + |
| 71 | + |
| 72 | +### Execute Tool Span |
| 73 | + |
| 74 | +This span wraps the execution of a tool. |
| 75 | + |
| 76 | +- `span.op` = `"gen_ai.execute_tool"` |
| 77 | +- `span.name` = `"gen_ai.execute_tool {tool.name}"` (Example: `"gen_ai.execute_tool query_database"`) |
| 78 | + |
| 79 | + |
| 80 | +- Span attributes: |
| 81 | + - `gen_ai.request.available_tools`: |
| 82 | + - `gen_ai.request.frequency_penalty`: Model configuration |
| 83 | + - `gen_ai.request.max_tokens`: Model configuration |
| 84 | + - `gen_ai.request.model`: |
| 85 | + - `gen_ai.request.presence_penalty`: Model configuration |
| 86 | + - `gen_ai.request.temperature`: Model configuration |
| 87 | + - `gen_ai.request.top_p`: Model configuration |
| 88 | + - `gen_ai.tool.description`: |
| 89 | + - `gen_ai.tool.input`: \{"max":10\} |
| 90 | + - `gen_ai.tool.name:`: "random_number" |
| 91 | + - `gen_ai.tool.output`: |
| 92 | + - `gen_ai.tool.type`: |
| 93 | + |
| 94 | +### AI Client Span |
| 95 | + |
| 96 | +This span wraps the request to an LLM. |
| 97 | + |
| 98 | +- `span.op` = `"gen_ai.{gen_ai.operation.name}"` (Example: `"gen_ai.chat"`) |
| 99 | +- `span.name` = `"{gen_ai.operation.name} {model.name}"` (Example: `"chat gpt-4o-mini"`) |
| 100 | +- Span attributes: |
| 101 | + - `gen_ai.request.available_tools` |
| 102 | + - `gen_ai.request.frequency_penalty` |
| 103 | + - `gen_ai.request.max_tokens` |
| 104 | + - `gen_ai.request.messages` |
| 105 | + - `gen_ai.request.model` |
| 106 | + - `gen_ai.request.presence_penalty` |
| 107 | + - `gen_ai.request.temperature` |
| 108 | + - `gen_ai.request.top_p` |
| 109 | + - `gen_ai.response.tool_calls` |
| 110 | + - `gen_ai.system` |
| 111 | + - `gen_ai.system.message` |
| 112 | + - `gen_ai.usage.input_tokens` |
| 113 | + - `gen_ai.usage.input_tokens.cached` |
| 114 | + - `gen_ai.usage.output_tokens` |
| 115 | + - `gen_ai.usage.output_tokens.reasoning` |
| 116 | + - `gen_ai.usage.total_tokens` |
| 117 | + - `gen_ai.user.message` |
0 commit comments