@@ -3022,20 +3022,19 @@ static int g_work_group_size = 0;
30223022// typedef sycl::half ggml_fp16_t;
30233023
30243024#define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP
3025- #define VER_4VEC 610 //todo for hardward optimize.
3025+ #define VER_4VEC 130 //todo for hardward optimize.
30263026#define VER_GEN9 700 //todo for hardward optimize.
30273027#define VER_GEN12 1000000 //todo for hardward optimize.
30283028#define VER_GEN13 (VER_GEN12 + 1030) //todo for hardward optimize.
30293029
30303030#define GGML_SYCL_MAX_NODES 8192 //TODO: adapt to hardwares
30313031
3032-
3033- //define for XMX in Intel GPU
3034- //TODO: currently, it's not used for XMX really.
3035- #define SYCL_USE_XMX
3032+ #if !defined(GGML_SYCL_FORCE_MMQ)
3033+ #define SYCL_USE_XMX
3034+ #endif
30363035
30373036// max batch size to use MMQ kernels when tensor cores are available
3038- #define XMX_MAX_BATCH_SIZE 32
3037+ #define MMQ_MAX_BATCH_SIZE 32
30393038
30403039
30413040#if defined(_MSC_VER)
@@ -15249,6 +15248,29 @@ catch (sycl::exception const &exc) {
1524915248 std::exit(1);
1525015249}
1525115250
15251+ inline bool ggml_sycl_supports_mmq(enum ggml_type type) {
15252+ // TODO: accuracy issues in MMQ
15253+ return false;
15254+ }
15255+
15256+ bool ggml_sycl_supports_dmmv(enum ggml_type type) {
15257+ switch (type) {
15258+ case GGML_TYPE_Q4_0:
15259+ case GGML_TYPE_Q4_1:
15260+ case GGML_TYPE_Q5_0:
15261+ case GGML_TYPE_Q5_1:
15262+ case GGML_TYPE_Q8_0:
15263+ case GGML_TYPE_Q2_K:
15264+ case GGML_TYPE_Q3_K:
15265+ case GGML_TYPE_Q4_K:
15266+ case GGML_TYPE_Q5_K:
15267+ case GGML_TYPE_Q6_K:
15268+ case GGML_TYPE_F16:
15269+ return true;
15270+ default:
15271+ return false;
15272+ }
15273+ }
1525215274
1525315275static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
1525415276 const bool all_on_device =
@@ -15265,76 +15287,42 @@ static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
1526515287 }
1526615288 }
1526715289
15268- #ifdef SYCL_USE_XMX
15269- const bool use_xmx = true;
15270- #else
15271- const bool use_xmx = false;
15272- #endif
15290+ // check data types and tensor shapes for custom matrix multiplication kernels:
15291+ bool use_dequantize_mul_mat_vec = ggml_sycl_supports_dmmv(src0->type)
15292+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
15293+ && src0->ne[0] % GGML_SYCL_DMMV_X == 0 && src1->ne[1] == 1;
1527315294
15274- // debug helpers
15275- //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
15276- //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
15277- //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
15278- //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
15279- //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
15280- //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
15295+ bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
15296+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
15297+ && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
15298+
15299+ bool use_mul_mat_q = ggml_sycl_supports_mmq(src0->type)
15300+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
15301+
15302+ // mmvq and mmq need the __dp4a instruction which is available for gen12+
15303+ // Workaround in https://github.com/ggerganov/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e
15304+ use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS);
15305+ #ifdef SYCL_USE_XMX
15306+ use_mul_mat_q = use_mul_mat_q && (src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
15307+ #endif // SYCL_USE_XMX
1528115308
15282- if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
15309+ if (!split && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
1528315310 // KQ single-batch
15284- // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_p021\n");
1528515311 ggml_sycl_mul_mat_vec_p021(src0, src1, dst);
15286- } else if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
15312+ } else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
1528715313 // KQV single-batch
15288- // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_nc\n");
1528915314 ggml_sycl_mul_mat_vec_nc(src0, src1, dst);
15290- } else if (!split && all_on_device && use_xmx && src0 ->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
15315+ } else if (!split && src0->type == GGML_TYPE_F16 && (src1 ->type == GGML_TYPE_F16) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1 ) {
1529115316 // KQ + KQV multi-batch
15292- // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_batched_sycl\n");
1529315317 ggml_sycl_mul_mat_batched_sycl(src0, src1, dst);
15294- } else if (src0->type == GGML_TYPE_F32) {
15295- // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat\n");
15296- ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
15297- } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
15298- // GGML_SYCL_DEBUG("ggml_is_quantized or GGML_TYPE_F16\n");
15299- if (src1->ne[1] == 1 && src0->ne[0] % GGML_SYCL_DMMV_X == 0) {
15300- #ifdef GGML_SYCL_FORCE_DMMV
15301- const bool use_mul_mat_vec_q = false;
15302- #else
15303- bool use_mul_mat_vec_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type);
15304- use_mul_mat_vec_q = use_mul_mat_vec_q ||
15305- (src0->type == GGML_TYPE_IQ2_XXS) || (src0->type == GGML_TYPE_IQ2_XS) || (src0->type == GGML_TYPE_IQ2_S) ||
15306- (src0->type == GGML_TYPE_IQ3_XXS) || (src0->type == GGML_TYPE_IQ3_S) ||
15307- (src0->type == GGML_TYPE_IQ4_NL) || (src0->type == GGML_TYPE_IQ4_XS) ||
15308- (src0->type == GGML_TYPE_IQ1_S) || (src0->type == GGML_TYPE_IQ1_M);
15309-
15310-
15311- #endif // GGML_SYCL_FORCE_DMMV
15312-
15313- if (use_mul_mat_vec_q) {
15314- // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_vec_q path\n");
15315- ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
15316- } else {
15317- // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_dequantize_mul_mat_vec path\n");
15318- ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
15319- }
15320- } else {
15321- bool use_mul_mat_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type);
15322- use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS);
15323-
15324- if (use_xmx && min_compute_capability >= VER_GEN9 && src1->ne[1] > XMX_MAX_BATCH_SIZE) {
15325- use_mul_mat_q = false;
15326- }
15327-
15328- if (use_mul_mat_q) {
15329- // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_q path\n");
15330- ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
15331- } else {
15332- // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_sycl path\n");
15333- ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
15334- }
15335- }
15318+ } else if (use_dequantize_mul_mat_vec) {
15319+ ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
15320+ } else if (use_mul_mat_vec_q) {
15321+ ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
15322+ } else if (use_mul_mat_q) {
15323+ ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
1533615324 } else {
15337- GGML_ASSERT( false);
15325+ ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
1533815326 }
1533915327}
1534015328
0 commit comments