@@ -3367,6 +3367,17 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
33673367 } break;
33683368 case LLM_ARCH_PLAMO2:
33693369 {
3370+ // mamba parameters
3371+ const uint32_t d_conv = hparams.ssm_d_conv;
3372+ const uint32_t d_state = hparams.ssm_d_state;
3373+ const uint32_t num_heads = hparams.ssm_dt_rank;
3374+ const uint32_t intermediate_size = hparams.ssm_d_inner;
3375+ const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
3376+
3377+ // attention parameters
3378+ const uint32_t qk_dim = hparams.n_embd_head_k;
3379+ const uint32_t v_dim = hparams.n_embd_head_v;
3380+
33703381 tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
33713382
33723383 // output
@@ -3381,16 +3392,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
33813392 auto & layer = layers[i];
33823393 bool is_mamba_layer = hparams.is_recurrent(i);
33833394
3384-
33853395 layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
33863396
33873397 if (is_mamba_layer) {
3388- const uint32_t d_conv = hparams.ssm_d_conv;
3389- const uint32_t d_state = hparams.ssm_d_state;
3390- const uint32_t num_heads = hparams.ssm_dt_rank;
3391- const uint32_t intermediate_size = hparams.ssm_d_inner;
3392- const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
3393-
33943398 layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2 * intermediate_size}, 0);
33953399 layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, intermediate_size}, 0);
33963400
@@ -3407,9 +3411,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
34073411 layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, i), {d_state}, 0);
34083412 layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, i), {d_state}, 0);
34093413 } else {
3410- const uint32_t head_dim = hparams.n_embd_head_k;
3411- const uint32_t qk_dim = head_dim;
3412- const uint32_t v_dim = head_dim;
34133414 const int64_t num_attention_heads = hparams.n_head(i);
34143415 const int64_t q_num_heads = num_attention_heads;
34153416 const int64_t num_key_value_heads = hparams.n_head_kv(i);
@@ -3420,8 +3421,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
34203421 const int64_t v_proj_dim = v_num_heads * v_dim;
34213422
34223423 layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, q_proj_dim + k_proj_dim + v_proj_dim}, 0);
3423- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {head_dim , num_attention_heads}, 0);
3424- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {head_dim , k_num_heads}, 0);
3424+ layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {qk_dim , num_attention_heads}, 0);
3425+ layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {qk_dim , k_num_heads}, 0);
34253426 layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {q_num_heads * v_dim, n_embd}, 0);
34263427 }
34273428
0 commit comments