@@ -516,7 +516,7 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
516516 nullptr ;
517517}
518518
519- template <int D, int ncols1, int ncols2, int KQ_stride > // D == head size
519+ template <int D, int ncols1, int ncols2> // D == head size
520520__launch_bounds__ (D, 1 )
521521static __global__ void flash_attn_stream_k_fixup(
522522 float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne11) {
@@ -665,13 +665,13 @@ static void on_no_fattn_vec_case(const int D) {
665665 fprintf (stderr, " Compile with GGML_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n " );
666666 GGML_ABORT (" fatal error" );
667667 } else {
668- fprintf (stderr, " Unsupported KV type combination for head_size 256 .\n " );
668+ fprintf (stderr, " Unsupported KV type combination for head_size %d .\n " , D );
669669 fprintf (stderr, " Only f16 is supported.\n " );
670670 GGML_ABORT (" fatal error" );
671671 }
672672}
673673
674- template <int D , int ncols1, int ncols2, int KQ_stride >
674+ template <int DV , int ncols1, int ncols2>
675675void launch_fattn (
676676 ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, const int nwarps, const size_t nbytes_shared,
677677 const int KQ_row_granularity, const bool need_f16_K, const bool need_f16_V, const bool stream_k, const int warp_size = WARP_SIZE
@@ -691,7 +691,7 @@ void launch_fattn(
691691
692692 GGML_ASSERT (!mask || mask->type == GGML_TYPE_F16);
693693 GGML_ASSERT (!mask || mask->ne [1 ] >= GGML_PAD (Q->ne [1 ], 16 ) &&
694- " the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big" );
694+ " the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big" );
695695
696696 GGML_ASSERT (K->ne [1 ] % FATTN_KQ_STRIDE == 0 && " Incorrect KV cache padding." );
697697
@@ -754,10 +754,13 @@ void launch_fattn(
754754 const int ntiles_total = ntiles_x * (Q->ne [2 ] / ncols2) * Q->ne [3 ];
755755
756756 const dim3 block_dim (warp_size, nwarps, 1 );
757+ int max_blocks_per_sm = 1 ; // Max. number of active blocks limited by occupancy.
758+ CUDA_CHECK (cudaOccupancyMaxActiveBlocksPerMultiprocessor (&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z , nbytes_shared));
759+
757760 dim3 blocks_num;
758761 if (stream_k) {
759762 // For short contexts it can be faster to have the SMs work on whole tiles because this lets us skip the fixup.
760- const int max_blocks = 2 *nsm;
763+ const int max_blocks = max_blocks_per_sm *nsm;
761764 const int tiles_nwaves = (ntiles_total + max_blocks - 1 ) / max_blocks;
762765 const int tiles_efficiency_percent = 100 * ntiles_total / (max_blocks*tiles_nwaves);
763766
@@ -769,14 +772,11 @@ void launch_fattn(
769772 blocks_num.y = 1 ;
770773 blocks_num.z = 1 ;
771774
772- dst_tmp_meta.alloc (blocks_num.x *ncols * (2 *2 + D ) * sizeof (float ));
775+ dst_tmp_meta.alloc (blocks_num.x *ncols * (2 *2 + DV ) * sizeof (float ));
773776 } else {
774777 GGML_ASSERT (K->ne [1 ] % KQ_row_granularity == 0 );
775778 const int ntiles_KQ = K->ne [1 ] / KQ_row_granularity; // Max. number of parallel blocks limited by tensor size.
776779
777- int max_blocks_per_sm = 1 ; // Max. number of active blocks limited by occupancy.
778- CUDA_CHECK (cudaOccupancyMaxActiveBlocksPerMultiprocessor (&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z , nbytes_shared));
779-
780780 // parallel_blocks should be at least large enough to achieve max. occupancy for a single wave:
781781 parallel_blocks = std::max ((nsm * max_blocks_per_sm) / ntiles_total, 1 );
782782
@@ -853,19 +853,19 @@ void launch_fattn(
853853
854854 if (stream_k) {
855855 if (ntiles_total % blocks_num.x != 0 ) { // Fixup is only needed if the SMs work on fractional tiles.
856- const dim3 block_dim_combine (D , 1 , 1 );
856+ const dim3 block_dim_combine (DV , 1 , 1 );
857857 const dim3 blocks_num_combine = {blocks_num.x , ncols1, ncols2};
858858
859- flash_attn_stream_k_fixup<D , ncols1, ncols2, KQ_stride >
859+ flash_attn_stream_k_fixup<DV , ncols1, ncols2>
860860 <<<blocks_num_combine, block_dim_combine, 0 , main_stream>>>
861861 ((float *) KQV->data , dst_tmp_meta.ptr , Q->ne [1 ], Q->ne [2 ], K->ne [1 ]);
862862 }
863863 } else if (parallel_blocks > 1 ) {
864- const dim3 block_dim_combine (D , 1 , 1 );
864+ const dim3 block_dim_combine (DV , 1 , 1 );
865865 const dim3 blocks_num_combine (Q->ne [1 ], 1 , blocks_num.z );
866866 const size_t nbytes_shared_combine = parallel_blocks*sizeof (float2 );
867867
868- flash_attn_combine_results<D >
868+ flash_attn_combine_results<DV >
869869 <<<blocks_num_combine, block_dim_combine, nbytes_shared_combine, main_stream>>>
870870 (dst_tmp.ptr , dst_tmp_meta.ptr , (float *) KQV->data , parallel_blocks);
871871 }
0 commit comments