@@ -1470,14 +1470,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
14701470 [](common_params & params) {
14711471 params.ctx_shift = false ;
14721472 }
1473- ).set_examples ({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env (" LLAMA_ARG_NO_CONTEXT_SHIFT" ));
1473+ ).set_examples ({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_FINETUNE }).set_env (" LLAMA_ARG_NO_CONTEXT_SHIFT" ));
14741474 add_opt (common_arg (
14751475 {" --chunks" }, " N" ,
14761476 string_format (" max number of chunks to process (default: %d, -1 = all)" , params.n_chunks ),
14771477 [](common_params & params, int value) {
14781478 params.n_chunks = value;
14791479 }
1480- ).set_examples ({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
1480+ ).set_examples ({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_FINETUNE, LLAMA_EXAMPLE_RETRIEVAL}));
14811481 add_opt (common_arg (
14821482 {" -fa" , " --flash-attn" },
14831483 string_format (" enable Flash Attention (default: %s)" , params.flash_attn ? " enabled" : " disabled" ),
@@ -1539,7 +1539,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
15391539 }
15401540 params.in_files .push_back (value);
15411541 }
1542- ).set_examples ({LLAMA_EXAMPLE_IMATRIX}));
1542+ ).set_examples ({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_FINETUNE }));
15431543 add_opt (common_arg (
15441544 {" -bf" , " --binary-file" }, " FNAME" ,
15451545 " binary file containing the prompt (default: none)" ,
@@ -2115,70 +2115,70 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
21152115 [](common_params & params) {
21162116 params.hellaswag = true ;
21172117 }
2118- ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY}));
2118+ ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_FINETUNE }));
21192119 add_opt (common_arg (
21202120 {" --hellaswag-tasks" }, " N" ,
21212121 string_format (" number of tasks to use when computing the HellaSwag score (default: %zu)" , params.hellaswag_tasks ),
21222122 [](common_params & params, int value) {
21232123 params.hellaswag_tasks = value;
21242124 }
2125- ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY}));
2125+ ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_FINETUNE }));
21262126 add_opt (common_arg (
21272127 {" --winogrande" },
21282128 " compute Winogrande score over random tasks from datafile supplied with -f" ,
21292129 [](common_params & params) {
21302130 params.winogrande = true ;
21312131 }
2132- ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY}));
2132+ ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_FINETUNE }));
21332133 add_opt (common_arg (
21342134 {" --winogrande-tasks" }, " N" ,
21352135 string_format (" number of tasks to use when computing the Winogrande score (default: %zu)" , params.winogrande_tasks ),
21362136 [](common_params & params, int value) {
21372137 params.winogrande_tasks = value;
21382138 }
2139- ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY}));
2139+ ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_FINETUNE }));
21402140 add_opt (common_arg (
21412141 {" --multiple-choice" },
21422142 " compute multiple choice score over random tasks from datafile supplied with -f" ,
21432143 [](common_params & params) {
21442144 params.multiple_choice = true ;
21452145 }
2146- ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY}));
2146+ ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_FINETUNE }));
21472147 add_opt (common_arg (
21482148 {" --multiple-choice-tasks" }, " N" ,
21492149 string_format (" number of tasks to use when computing the multiple choice score (default: %zu)" , params.multiple_choice_tasks ),
21502150 [](common_params & params, int value) {
21512151 params.multiple_choice_tasks = value;
21522152 }
2153- ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY}));
2153+ ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_FINETUNE }));
21542154 add_opt (common_arg (
21552155 {" --kl-divergence" },
21562156 " computes KL-divergence to logits provided via --kl-divergence-base" ,
21572157 [](common_params & params) {
21582158 params.kl_divergence = true ;
21592159 }
2160- ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY}));
2160+ ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_FINETUNE }));
21612161 add_opt (common_arg (
21622162 {" --save-all-logits" , " --kl-divergence-base" }, " FNAME" ,
21632163 " set logits file" ,
21642164 [](common_params & params, const std::string & value) {
21652165 params.logits_file = value;
21662166 }
2167- ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY}));
2167+ ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_FINETUNE }));
21682168 add_opt (common_arg (
21692169 {" --ppl-stride" }, " N" ,
21702170 string_format (" stride for perplexity calculation (default: %d)" , params.ppl_stride ),
21712171 [](common_params & params, int value) {
21722172 params.ppl_stride = value;
21732173 }
2174- ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY}));
2174+ ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_FINETUNE }));
21752175 add_opt (common_arg (
21762176 {" --ppl-output-type" }, " <0|1>" ,
21772177 string_format (" output type for perplexity calculation (default: %d)" , params.ppl_output_type ),
21782178 [](common_params & params, int value) {
21792179 params.ppl_output_type = value;
21802180 }
2181- ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY}));
2181+ ).set_examples ({LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_FINETUNE }));
21822182 add_opt (common_arg (
21832183 {" -dt" , " --defrag-thold" }, " N" ,
21842184 string_format (" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)" , (double )params.defrag_thold ),
@@ -2609,9 +2609,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
26092609 {" -o" , " --output" , " --output-file" }, " FNAME" ,
26102610 string_format (" output file (default: '%s')" , params.out_file .c_str ()),
26112611 [](common_params & params, const std::string & value) {
2612- params.out_file = value;
2612+ params.out_file = value;
26132613 }
2614- ).set_examples ({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS}));
2614+ ).set_examples ({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_FINETUNE }));
26152615 add_opt (common_arg (
26162616 {" -ofreq" , " --output-frequency" }, " N" ,
26172617 string_format (" output the imatrix every N iterations (default: %d)" , params.n_out_freq ),
@@ -3423,5 +3423,73 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
34233423 }
34243424 ).set_examples ({LLAMA_EXAMPLE_SERVER}));
34253425
3426+ add_opt (common_arg (
3427+ {" --dataset-format" }, " " ,
3428+ string_format (" type of input data (e.g., 'text', 'parquet') (default: %s)" , params.dataset_format .c_str ()),
3429+ [](common_params & params, const std::string & format) {
3430+ params.dataset_format = format; // TODO ENUM CLASS
3431+ }
3432+ ).set_examples ({LLAMA_EXAMPLE_FINETUNE}));
3433+
3434+ add_opt (common_arg (
3435+ {" --max-seq-len" }, " " ,
3436+ string_format (" max sequence length (default: %d)" , params.max_seq_len ),
3437+ [](common_params & params, int32_t max_seq_len) {
3438+ params.max_seq_len = max_seq_len;
3439+ }
3440+ ).set_examples ({LLAMA_EXAMPLE_FINETUNE}));
3441+
3442+ add_opt (common_arg (
3443+ {" --pre-tokenized" },
3444+ string_format (" input file contains pre-tokenized data (space-separated token IDs)" ),
3445+ [](common_params & params) {
3446+ params.pre_tokenized = true ;
3447+ }
3448+ ).set_examples ({LLAMA_EXAMPLE_FINETUNE}));
3449+
3450+ add_opt (common_arg (
3451+ {" --preview" },
3452+ string_format (" read and print metadata and first sequence from the output GGUF file (enables preview)" ),
3453+ [](common_params & params) {
3454+ params.do_preview = true ;
3455+ }
3456+ ).set_examples ({LLAMA_EXAMPLE_FINETUNE}));
3457+
3458+ add_opt (common_arg (
3459+ {" --preview-count" }, " <N>" ,
3460+ string_format (" input file contains pre-tokenized data (space-separated token IDs)" ),
3461+ [](common_params & params, int preview_count) {
3462+ params.preview_count = preview_count;
3463+ }
3464+ ).set_examples ({LLAMA_EXAMPLE_FINETUNE}));
3465+
3466+ add_opt (common_arg (
3467+ {" --detokenize-preview" },
3468+ string_format (" detokenize previewed sequences (implies --preview)" ),
3469+ [](common_params & params) {
3470+ params.detokenize_preview = params.do_preview = true ;
3471+ }
3472+ ).set_examples ({LLAMA_EXAMPLE_FINETUNE}));
3473+
3474+ #ifdef LLAMA_PARQUET
3475+
3476+
3477+ add_opt (common_arg (
3478+ {" --parquet-text-column" }, " <name>" ,
3479+ string_format (" column name for raw text in Parquet files (default: 'text')" ),
3480+ [](common_params & params, const std::string &parquet_text_column) {
3481+ params.parquet_text_column = parquet_text_column;
3482+ }
3483+ ).set_examples ({LLAMA_EXAMPLE_FINETUNE}));
3484+
3485+ add_opt (common_arg (
3486+ {" --parquet-tokens-column" }, " <name>" ,
3487+ string_format (" column name for pre-tokenized data (list<int32>) in Parquet files (default: 'tokens')" ),
3488+ [](common_params & params, const std::string &parquet_tokens_column) {
3489+ params.parquet_tokens_column = parquet_tokens_column;
3490+ }
3491+ ).set_examples ({LLAMA_EXAMPLE_FINETUNE}));
3492+
3493+ #endif
34263494 return ctx_arg;
34273495}
0 commit comments