@@ -738,6 +738,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
738738 }
739739 }
740740 } break;
741+ case LLM_ARCH_NEO_BERT:
742+ {
743+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
744+ ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
745+ ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
746+
747+ if (hparams.n_layer == 28) {
748+ type = LLM_TYPE_250M;
749+ }
750+ } break;
741751 case LLM_ARCH_BLOOM:
742752 {
743753 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -2187,6 +2197,32 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
21872197 layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
21882198 }
21892199 } break;
2200+ case LLM_ARCH_NEO_BERT:
2201+ {
2202+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
2203+
2204+ cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
2205+ cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
2206+
2207+ cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
2208+ cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
2209+
2210+ output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
2211+
2212+ for (int i = 0; i < n_layer; ++i) {
2213+ auto & layer = layers[i];
2214+
2215+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
2216+
2217+ layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
2218+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
2219+
2220+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
2221+
2222+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff*2}, 0);
2223+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
2224+ }
2225+ } break;
21902226 case LLM_ARCH_JINA_BERT_V2:
21912227 {
21922228 tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
@@ -6074,6 +6110,117 @@ struct llm_build_bert : public llm_graph_context {
60746110 }
60756111};
60766112
6113+ struct llm_build_neo_bert : public llm_graph_context {
6114+ llm_build_neo_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
6115+ const int64_t n_embd_head = hparams.n_embd_head_v;
6116+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
6117+
6118+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
6119+
6120+ ggml_tensor * cur;
6121+ ggml_tensor * inpL;
6122+ ggml_tensor * inp_pos = build_inp_pos();
6123+
6124+ // construct input embeddings (token, type, position)
6125+ inpL = build_inp_embd(model.tok_embd);
6126+ cb(inpL, "inp_embd", -1);
6127+
6128+ auto * inp_attn = build_attn_inp_no_cache();
6129+
6130+ // iterate layers
6131+ for (int il = 0; il < n_layer; ++il) {
6132+ ggml_tensor * cur = inpL;
6133+
6134+ ggml_tensor * Qcur;
6135+ ggml_tensor * Kcur;
6136+ ggml_tensor * Vcur;
6137+
6138+ // pre-norm
6139+ cur = build_norm(inpL,
6140+ model.layers[il].attn_norm, NULL,
6141+ LLM_NORM_RMS, il);
6142+
6143+ // self-attention
6144+ cur = build_lora_mm(model.layers[il].wqkv, cur);
6145+ cb(cur, "wqkv", il);
6146+
6147+ Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
6148+ Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
6149+ Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
6150+
6151+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
6152+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
6153+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
6154+
6155+ // RoPE
6156+ Qcur = ggml_rope_ext(
6157+ ctx0, Qcur, inp_pos, nullptr,
6158+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
6159+ ext_factor, attn_factor, beta_fast, beta_slow
6160+ );
6161+
6162+ Kcur = ggml_rope_ext(
6163+ ctx0, Kcur, inp_pos, nullptr,
6164+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
6165+ ext_factor, attn_factor, beta_fast, beta_slow
6166+ );
6167+
6168+ cb(Qcur, "Qcur", il);
6169+ cb(Kcur, "Kcur", il);
6170+ cb(Vcur, "Vcur", il);
6171+
6172+ cur = build_attn(inp_attn, gf,
6173+ model.layers[il].wo, nullptr,
6174+ Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
6175+ cb(cur, "kqv_out", il);
6176+
6177+ if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
6178+ // skip computing output for unused tokens
6179+ ggml_tensor * inp_out_ids = build_inp_out_ids();
6180+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
6181+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
6182+ }
6183+
6184+ // re-add the layer input
6185+ cur = ggml_add(ctx0, cur, inpL);
6186+
6187+ ggml_tensor * ffn_inp = cur;
6188+ cb(ffn_inp, "ffn_inp", il);
6189+
6190+ // pre-norm
6191+ cur = build_norm(ffn_inp,
6192+ model.layers[il].ffn_norm, NULL,
6193+ LLM_NORM_RMS, il);
6194+ cb(cur, "ffn_norm", il);
6195+
6196+ // feed-forward network
6197+ cur = build_ffn(cur,
6198+ model.layers[il].ffn_up,
6199+ NULL, NULL, NULL, NULL, NULL,
6200+ model.layers[il].ffn_down,
6201+ NULL, NULL, NULL,
6202+ LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
6203+
6204+ // attentions bypass the intermediate layer
6205+ cur = ggml_add(ctx0, cur, ffn_inp);
6206+
6207+ // input for next layer
6208+ inpL = cur;
6209+ }
6210+
6211+ cur = inpL;
6212+
6213+ cur = build_norm(cur,
6214+ model.output_norm_enc, NULL,
6215+ LLM_NORM_RMS, -1);
6216+
6217+ cb(cur, "result_embd", -1);
6218+ res->t_embd = cur;
6219+
6220+ ggml_build_forward_expand(gf, cur);
6221+ }
6222+ };
6223+
60776224struct llm_build_bloom : public llm_graph_context {
60786225 llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
60796226 const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -13202,6 +13349,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
1320213349 case LLM_ARCH_JINA_BERT_V2:
1320313350 case LLM_ARCH_NOMIC_BERT:
1320413351 case LLM_ARCH_NOMIC_BERT_MOE:
13352+ case LLM_ARCH_NEO_BERT:
1320513353 case LLM_ARCH_WAVTOKENIZER_DEC:
1320613354 {
1320713355 res = nullptr;
@@ -13310,6 +13458,10 @@ llm_graph_result_ptr llama_model::build_graph(
1331013458 {
1331113459 llm = std::make_unique<llm_build_bert>(*this, params, gf);
1331213460 } break;
13461+ case LLM_ARCH_NEO_BERT:
13462+ {
13463+ llm = std::make_unique<llm_build_neo_bert>(*this, params, gf);
13464+ } break;
1331313465 case LLM_ARCH_BLOOM:
1331413466 {
1331513467 llm = std::make_unique<llm_build_bloom>(*this, params, gf);
@@ -13681,6 +13833,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
1368113833 case LLM_ARCH_GRANITE_MOE:
1368213834 case LLM_ARCH_CHAMELEON:
1368313835 case LLM_ARCH_BAILINGMOE:
13836+ case LLM_ARCH_NEO_BERT:
1368413837 return LLAMA_ROPE_TYPE_NORM;
1368513838
1368613839 // the pairs of head values are offset by n_rot/2
0 commit comments