@@ -818,6 +818,21 @@ def get_vocab_base_pre(self, tokenizer) -> str:
818818 if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664" :
819819 # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
820820 res = "hunyuan"
821+ if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf" :
822+ # ref: https://huggingface.co/skt/A.X-4.0
823+ res = "a.x-4.0"
824+ if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6" :
825+ # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
826+ res = "falcon-h1"
827+ if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86" :
828+ # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
829+ res = "falcon-h1"
830+ if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896" :
831+ # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
832+ res = "falcon-h1"
833+ if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b" :
834+ # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
835+ res = "falcon-h1"
821836
822837 if res is None :
823838 logger .warning ("\n " )
@@ -4876,7 +4891,7 @@ def __init__(self, dir_model: Path, *args, **kwargs):
48764891 hparams = json .load (f )
48774892 super ().__init__ (dir_model , * args , hparams = hparams , ** kwargs )
48784893 self .d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4879- self .d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * self .d_model
4894+ self .d_inner = self .find_hparam (["mamba_d_ssm" , " intermediate_size" , "d_inner" ], optional = True ) or 2 * self .d_model
48804895 self .n_group = self .find_hparam (["n_groups" ], optional = True ) or 1
48814896
48824897 def set_vocab (self ):
@@ -4900,16 +4915,18 @@ def set_vocab(self):
49004915 self ._set_vocab_builtin ("gpt-neox" , vocab_size )
49014916
49024917 def set_gguf_parameters (self ):
4903- d_conv = self .find_hparam (["conv_kernel" , "d_conv" ], optional = True ) or 4
4904- d_state = self .find_hparam (["state_size" , "d_state" ], optional = True ) or 128
4905- head_dim = self .find_hparam (["head_dim" ], optional = True ) or 64
4918+ d_conv = self .find_hparam (["conv_kernel" , "d_conv" ], optional = True ) or 4
4919+ d_state = self .find_hparam (["state_size" , "d_state" ], optional = True ) or 128
4920+ head_dim = self .find_hparam (["mamba_d_head" , " head_dim" ], optional = True ) or 64
49064921
49074922 rms_norm_eps = self .find_hparam (["layer_norm_epsilon" , "rms_norm_eps" ], optional = True ) or 1e-5
49084923
49094924 # Fail early for models which don't have a block expansion factor of 2
49104925 # TODO: does this really matter?
4911- assert self .d_inner == 2 * self .d_model
4912- assert self .d_inner % head_dim == 0
4926+ # skip the assertion for FalconH1 Model
4927+ if self .model_arch != gguf .MODEL_ARCH .FALCON_H1 :
4928+ assert self .d_inner == 2 * self .d_model
4929+ assert self .d_inner % head_dim == 0
49134930
49144931 self .gguf_writer .add_context_length (2 ** 20 ) # arbitrary value; for those who use the default
49154932 self .gguf_writer .add_embedding_length (self .d_model )
@@ -6804,6 +6821,113 @@ def set_gguf_parameters(self):
68046821 self .gguf_writer .add_audio_stack_factor (self .global_config ["stack_factor" ])
68056822
68066823
6824+ @ModelBase .register ("FalconH1ForCausalLM" )
6825+ class FalconH1Model (Mamba2Model ):
6826+ model_arch = gguf .MODEL_ARCH .FALCON_H1
6827+
6828+ def __init__ (self , * args , ** kwargs ):
6829+ # Set the hparam prefixes for Falcon Mamba2
6830+ self .hparam_prefixes = ["mamba" ]
6831+
6832+ # Initialize the base Mamba2Model
6833+ super ().__init__ (* args , ** kwargs )
6834+
6835+ # Use Llama conversion for attention
6836+ self ._transformer_model_class = LlamaModel
6837+
6838+ # n_group and d_inner are used during reshape_tensors for mamaba2
6839+ self .n_group = self .find_hparam (["n_groups" ])
6840+ self .d_inner = self .find_hparam (["mamba_d_ssm" ])
6841+ self .d_head = self .find_hparam (["d_head" ])
6842+
6843+ # Initialize any Falcon Mamba2 specific attributes
6844+ self .has_attention = True # Falcon Mamba2 has attention components
6845+
6846+ # Load Falcon-H1 multipliers from hyperparameters
6847+ self .attention_in_multiplier = self .find_hparam (["attention_in_multiplier" ], optional = True )
6848+ self .attention_out_multiplier = self .find_hparam (["attention_out_multiplier" ], optional = True )
6849+ self .ssm_in_multiplier = self .find_hparam (["ssm_in_multiplier" ], optional = True )
6850+ self .ssm_out_multiplier = self .find_hparam (["ssm_out_multiplier" ], optional = True )
6851+ self .mlp_multipliers = self .find_hparam (["mlp_multipliers" ], optional = True )
6852+ self .ssm_multipliers = self .find_hparam (["ssm_multipliers" ], optional = True )
6853+ self .intermediate_size = self .find_hparam (["intermediate_size" ])
6854+ self .key_multiplier = self .find_hparam (["key_multiplier" ], optional = True )
6855+
6856+ def find_hparam (self , keys : Iterable [str ], * args , ** kwargs ) -> Any :
6857+ prefixed = []
6858+ for pfx in self .hparam_prefixes :
6859+ prefixed .extend (
6860+ "_" .join ([pfx , k ])
6861+ for k in keys
6862+ )
6863+ keys = list (keys ) + prefixed
6864+ return super ().find_hparam (keys , * args , ** kwargs )
6865+
6866+ def set_vocab (self ):
6867+ self ._set_vocab_gpt2 ()
6868+
6869+ def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
6870+ tensors = list (super ().modify_tensors (data_torch , name , bid ))
6871+ tensor = tensors [0 ][1 ]
6872+
6873+ if "down_proj" in name :
6874+ tensor = tensor * self .mlp_multipliers [1 ]
6875+ elif "gate_proj" in name :
6876+ tensor = tensor * self .mlp_multipliers [0 ]
6877+ elif "k_proj" in name :
6878+ tensor = tensor * self .key_multiplier * self .attention_in_multiplier
6879+ elif "q_proj" in name :
6880+ tensor = tensor * self .attention_in_multiplier
6881+ elif "v_proj" in name :
6882+ tensor = tensor * self .attention_in_multiplier
6883+ elif "o_proj" in name :
6884+ tensor = tensor * self .attention_out_multiplier
6885+ elif "out_proj" in name :
6886+ tensor = tensor * self .ssm_out_multiplier
6887+ elif "in_proj" in name :
6888+ tensor = tensor * self .ssm_in_multiplier
6889+ zxbcdt_multipliers = self .hparams ["ssm_multipliers" ]
6890+ intermediate_size = self .hparams ["mamba_d_ssm" ]
6891+ groups_time_state_size = self .hparams ["mamba_n_groups" ] * self .hparams ["mamba_d_state" ]
6892+ tensor [:intermediate_size , :] *= zxbcdt_multipliers [0 ]
6893+ tensor [intermediate_size :2 * intermediate_size , :] *= zxbcdt_multipliers [1 ]
6894+ tensor [2 * intermediate_size :2 * intermediate_size + groups_time_state_size , :] *= zxbcdt_multipliers [2 ]
6895+ tensor [2 * intermediate_size + groups_time_state_size :2 * intermediate_size + 2 * groups_time_state_size , :] *= zxbcdt_multipliers [3 ]
6896+ tensor [2 * intermediate_size + 2 * groups_time_state_size :, :] *= zxbcdt_multipliers [4 ]
6897+ elif "lm_head" in name :
6898+ tensor = tensor * self .hparams ["lm_head_multiplier" ]
6899+ elif "embed_tokens" in name :
6900+ tensor = tensor * self .hparams ["embedding_multiplier" ]
6901+ elif "mamba.norm" in name :
6902+ tensor = tensor .reshape (self .n_group , self .d_inner // self .n_group )
6903+
6904+ tensors = [(tensors [0 ][0 ], tensor )]
6905+ return tensors
6906+
6907+ def set_gguf_parameters (self ):
6908+ super ().set_gguf_parameters ()
6909+
6910+ ## General Params ##
6911+ self .gguf_writer .add_vocab_size (self .hparams ["vocab_size" ])
6912+ # Override some Mamba2 defaults
6913+ self .gguf_writer .add_block_count (self .block_count )
6914+ self .gguf_writer .add_context_length (self .hparams .get ("max_position_embeddings" , 0 ))
6915+ self .gguf_writer .add_feed_forward_length (self .hparams ["intermediate_size" ])
6916+
6917+ ## Attention params ##
6918+ self .gguf_writer .add_head_count (self .hparams ["num_attention_heads" ]) # Override value 0 from Mamba2
6919+ self .gguf_writer .add_head_count_kv (self .hparams ["num_key_value_heads" ])
6920+ self .gguf_writer .add_key_length (self .hparams ["head_dim" ])
6921+ self .gguf_writer .add_value_length (self .hparams ["head_dim" ])
6922+
6923+ ## Validation ##
6924+ assert self .hparams .get ("hidden_act" ) in [None , "silu" ], "Only SILU activation supported"
6925+ assert self .d_inner % self .d_head == 0 , f"SSM inner size { self .d_inner } not a multiple of head dim { self .d_head } "
6926+
6927+ # Add any other Falcon Mamba2 specific configuration
6928+ self .gguf_writer .add_rope_freq_base (self .find_hparam (["rope_theta" ]))
6929+
6930+
68076931@ModelBase .register ("HunYuanMoEV1ForCausalLM" )
68086932class HunYuanMoEModel (TextModel ):
68096933 model_arch = gguf .MODEL_ARCH .HUNYUAN_MOE
@@ -6957,6 +7081,16 @@ def prepare_tensors(self):
69577081class SmolLM3Model (LlamaModel ):
69587082 model_arch = gguf .MODEL_ARCH .SMOLLM3
69597083
7084+ def set_vocab (self ):
7085+ super ().set_vocab ()
7086+ # remove unsupported array slicing in chat template
7087+ # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
7088+ from transformers import AutoTokenizer
7089+ tokenizer = AutoTokenizer .from_pretrained (self .dir_model )
7090+ if tokenizer .chat_template is not None :
7091+ chat_template = tokenizer .chat_template .replace ("[:]" , "" )
7092+ self .gguf_writer .add_chat_template (chat_template )
7093+
69607094###### CONVERSION LOGIC ######
69617095
69627096
0 commit comments