@@ -10,6 +10,7 @@ layout (constant_id = 0) const uint BLOCK_SIZE = 32;
1010layout (constant_id = 1) const uint NUM_ROWS = 1;
1111
1212shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
13+ shared block_q6_K_packed16 blkcache[BLOCK_SIZE/16];
1314
1415void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
1516 uint a_offset, b_offset, d_offset;
@@ -20,13 +21,11 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
2021 // 16 threads are used to process each block
2122 const uint it_size = gl_WorkGroupSize.x/16;
2223 const uint tid = gl_LocalInvocationID.x;
23- const uint itid = tid%16; // 0...16
24+ const uint itid = tid%16; // 0...15
2425 const uint ix = tid/16;
2526
26- const uint step = 8;
27-
28- const uint v_im = itid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
29- const uint v_in = itid - step*v_im; // 0...15 or 0...7
27+ const uint v_im = itid/8; // 0 or 1. 0 computes 0..., 1 computes 128...
28+ const uint v_in = itid - 8*v_im; // 0...15 or 0...7
3029
3130 const uint l0 = 4 * v_in; // 0, 4, 8, ..., 28
3231 const uint is = v_in / 4;
@@ -50,28 +49,33 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
5049 B_TYPE_VEC4 by64 = data_b_v4[(b_offset + y_idx) / 4 + 16];
5150 B_TYPE_VEC4 by96 = data_b_v4[(b_offset + y_idx) / 4 + 24];
5251
52+ uint ibi = first_row*num_blocks_per_row;
5353 [[unroll]] for (uint n = 0; n < num_rows; ++n) {
54- const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row ;
55- const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d) ;
54+ const uint ib0 = a_offset / QUANT_K + ibi ;
55+ ibi += num_blocks_per_row ;
5656
57- FLOAT_TYPE scales[4];
58- scales[0] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]);
59- scales[1] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]);
60- scales[2] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]);
61- scales[3] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]);
57+ // cache full superblock into shared memory with coalesced reads
58+ [[unroll]] for (int l = 0; l < 4; ++l)
59+ blkcache[ix].ql[itid + 16*l] = data_a_packed16[ib0 + i].ql[itid + 16*l];
60+ [[unroll]] for (int l = 0; l < 2; ++l)
61+ blkcache[ix].qh[itid + 16*l] = data_a_packed16[ib0 + i].qh[itid + 16*l];
62+ blkcache[ix].scales[itid] = data_a_packed16[ib0 + i].scales[itid];
63+ barrier();
6264
63- uint32_t ql0_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 1]) << 16);
64- uint32_t ql32_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 16]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 17]) << 16);
65+ const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
66+
67+ uint32_t ql0_u32 = uint32_t(blkcache[ix].ql[ql_offset / 2]) | (uint32_t(blkcache[ix].ql[ql_offset / 2 + 1]) << 16);
68+ uint32_t ql32_u32 = uint32_t(blkcache[ix].ql[ql_offset / 2 + 16]) | (uint32_t(blkcache[ix].ql[ql_offset / 2 + 17]) << 16);
6569
6670 uint32_t ql0_u32_lo4 = ql0_u32 & 0x0F0F0F0F;
6771 uint32_t ql0_u32_hi4 = (ql0_u32 >> 4) & 0x0F0F0F0F;
6872 uint32_t ql32_u32_lo4 = ql32_u32 & 0x0F0F0F0F;
6973 uint32_t ql32_u32_hi4 = (ql32_u32 >> 4) & 0x0F0F0F0F;
7074
71- uint32_t qh_u32 = uint32_t(data_a_packed16[ib0 + i ].qh[qh_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i ].qh[qh_offset / 2 + 1]) << 16);
75+ uint32_t qh_u32 = uint32_t(blkcache[ix ].qh[qh_offset / 2]) | (uint32_t(blkcache[ix ].qh[qh_offset / 2 + 1]) << 16);
7276 uint32_t qh0_u32 = (qh_u32 & 0x03030303) << 4;
7377 uint32_t qh2_u32 = (qh_u32 & 0x0C0C0C0C) << 2;
74- uint32_t qh4_u32 = (qh_u32 & 0x30303030) << 0 ;
78+ uint32_t qh4_u32 = (qh_u32 & 0x30303030);
7579 uint32_t qh6_u32 = (qh_u32 & 0xC0C0C0C0) >> 2;
7680
7781 uint32_t q0_u32 = ql0_u32_lo4 | qh0_u32;
@@ -84,14 +88,17 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
8488 uvec4 q2 = uvec4(unpack8(q2_u32));
8589 uvec4 q3 = uvec4(unpack8(q3_u32));
8690
87- FLOAT_TYPE sum = FLOAT_TYPE(0.0) ;
91+ FLOAT_TYPE sum[4] = {0, 0, 0, 0} ;
8892 [[unroll]] for (int l = 0; l < 4; ++l) {
89- sum = fma(FLOAT_TYPE(by0[l]) * scales[0] , FLOAT_TYPE(int8_t(q0[l]) - 32),
90- fma(FLOAT_TYPE(by32[l]) * scales[1] , FLOAT_TYPE(int8_t(q1[l]) - 32),
91- fma(FLOAT_TYPE(by64[l]) * scales[2] , FLOAT_TYPE(int8_t(q2[l]) - 32),
92- fma(FLOAT_TYPE(by96[l]) * scales[3] , FLOAT_TYPE(int8_t(q3[l]) - 32), sum))) );
93+ sum[0] = fma(FLOAT_TYPE(by0[l]), FLOAT_TYPE(int8_t(q0[l]) - 32), sum[0]);
94+ sum[1] = fma(FLOAT_TYPE(by32[l]), FLOAT_TYPE(int8_t(q1[l]) - 32), sum[1]);
95+ sum[2] = fma(FLOAT_TYPE(by64[l]), FLOAT_TYPE(int8_t(q2[l]) - 32), sum[2]);
96+ sum[3] = fma(FLOAT_TYPE(by96[l]), FLOAT_TYPE(int8_t(q3[l]) - 32), sum[3] );
9397 }
94- temp[n] += sum * d;
98+
99+ [[unroll]] for (int l = 0; l < 4; ++l)
100+ sum[l] *= FLOAT_TYPE(blkcache[ix].scales[s_offset + l*2]);
101+ temp[n] += (sum[0] + sum[1] + sum[2] + sum[3]) * d;
95102 }
96103 }
97104
0 commit comments