@@ -196,6 +196,62 @@ void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
196196 ggml_cuda_op_unary<op_log>(ctx, dst);
197197}
198198
199+ /* gated ops */
200+
201+ template <float (*op)(float ), typename T>
202+ static __global__ void unary_gated_op_kernel (const T * x, T * dst, const int k, const int n, const int o) {
203+ const int i = blockDim .x *blockIdx .x + threadIdx .x ;
204+
205+ if (i >= k) {
206+ return ;
207+ }
208+
209+ // perform base op on first half of row and multiply with gate in second half
210+ const int j = (i / n) * o + (i % n);
211+ dst[i] = (T)(op ((float )x[j]) * (float )x[j + n]);
212+ }
213+
214+ template <float (*op)(float ), typename T>
215+ static void unary_gated_cuda (const T * x, T * dst, const int k, const int n, const int o, cudaStream_t stream) {
216+ const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1 ) / CUDA_NEG_BLOCK_SIZE;
217+ unary_gated_op_kernel<op><<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0 , stream>>> (x, dst, k, n, o);
218+ }
219+
220+ template <float (*op)(float )>
221+ void ggml_cuda_op_unary_gated (ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
222+ const ggml_tensor * src0 = dst->src [0 ];
223+ const void * src0_d = src0->data ;
224+ void * dst_d = dst->data ;
225+ const int nc = src0->ne [0 ] / 2 ;
226+ cudaStream_t stream = ctx.stream ();
227+
228+ GGML_ASSERT (ggml_is_contiguous_1 (src0));
229+
230+ GGML_ASSERT (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
231+ GGML_ASSERT ( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
232+ GGML_ASSERT (src0->type == dst->type );
233+ GGML_ASSERT (dst->ne [0 ] >= nc);
234+ GGML_ASSERT (ggml_nrows (dst) >= ggml_nrows (src0));
235+
236+ if (src0->type == GGML_TYPE_F16) {
237+ unary_gated_cuda<op>((const half *)src0_d, (half *)dst_d, ggml_nelements (dst), nc, src0->nb [1 ] / sizeof (half), stream);
238+ } else {
239+ unary_gated_cuda<op>((const float *)src0_d, (float *)dst_d, ggml_nelements (dst), nc, src0->nb [1 ] / sizeof (float ), stream);
240+ }
241+ }
242+
243+ void ggml_cuda_op_reglu (ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
244+ ggml_cuda_op_unary_gated<op_relu>(ctx, dst);
245+ }
246+
247+ void ggml_cuda_op_geglu (ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
248+ ggml_cuda_op_unary_gated<op_gelu>(ctx, dst);
249+ }
250+
251+ void ggml_cuda_op_swiglu (ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
252+ ggml_cuda_op_unary_gated<op_silu>(ctx, dst);
253+ }
254+
199255/* silu_back */
200256
201257static __device__ __forceinline__ float op_silu_back (float grad, float x) {
0 commit comments