Skip to content

Commit 1af85b5

Browse files
committed
SYCL: Add Gated Linear attention kernel
1 parent ee7136c commit 1af85b5

File tree

4 files changed

+116
-0
lines changed

4 files changed

+116
-0
lines changed

ggml/src/ggml-sycl/backend.hpp

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -29,5 +29,6 @@
2929
#include "wkv6.hpp"
3030
#include "outprod.hpp"
3131
#include "element_wise.hpp"
32+
#include "gla.hpp"
3233

3334
#endif // GGML_SYCL_BACKEND_HPP

ggml/src/ggml-sycl/ggml-sycl.cpp

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4040,6 +4040,9 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens
40404040
case GGML_OP_RWKV_WKV6:
40414041
ggml_sycl_op_rwkv_wkv6(ctx, dst);
40424042
break;
4043+
case GGML_OP_GATED_LINEAR_ATTN:
4044+
ggml_sycl_op_gated_linear_attn(ctx, dst);
4045+
break;
40434046
default:
40444047
return false;
40454048
}
@@ -4507,6 +4510,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
45074510
case GGML_OP_LEAKY_RELU:
45084511
case GGML_OP_TIMESTEP_EMBEDDING:
45094512
case GGML_OP_RWKV_WKV6:
4513+
case GGML_OP_GATED_LINEAR_ATTN:
45104514
return true;
45114515
default:
45124516
return false;

ggml/src/ggml-sycl/gla.cpp

Lines changed: 103 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,103 @@
1+
#include <sycl/sycl.hpp>
2+
3+
#include "common.hpp"
4+
5+
template <u_int HEAD_SIZE>
6+
static void gated_linear_attn_f32_kernel(const dpct::queue_ptr stream, u_int B, u_int T, u_int C, u_int H, float scale,
7+
const float * k, const float * v, const float * r, const float * td,
8+
const float * s, float * dst) {
9+
const u_int head_size = HEAD_SIZE;
10+
const u_int state_size = C * head_size;
11+
const u_int n_seq_tokens = T / B;
12+
sycl::range<1> block_dims((C / H));
13+
sycl::range<1> grid_dims((B * H));
14+
stream->submit([&](sycl::handler & cgh) {
15+
/* local memory accessors*/
16+
auto _k = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh);
17+
auto _r = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh);
18+
auto _td = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh);
19+
20+
cgh.parallel_for(sycl::nd_range<1>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<1> item) {
21+
u_int tid = item.get_local_id(0);
22+
u_int bid = item.get_group(0);
23+
24+
u_int batch_i = bid / H;
25+
u_int head_i = bid % H;
26+
27+
float state[head_size];
28+
29+
#pragma unroll
30+
for (u_int i = 0; i < head_size; i++) {
31+
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
32+
}
33+
item.barrier(sycl::access::fence_space::local_space); //sync threads
34+
for (u_int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
35+
t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) {
36+
_k[tid] = k[t];
37+
_r[tid] = r[t];
38+
_td[tid] = td[t];
39+
item.barrier(sycl::access::fence_space::local_space); //sync threads
40+
41+
const float _v = v[t];
42+
float y = 0;
43+
44+
for (u_int j = 0; j < head_size; j += 4) {
45+
const sycl::float4 & k = (sycl::float4 &) (_k[j]);
46+
const sycl::float4 & r = (sycl::float4 &) (_r[j]);
47+
const sycl::float4 & td = (sycl::float4 &) (_td[j]);
48+
sycl::float4 & s = (sycl::float4 &) (state[j]);
49+
sycl::float4 kv;
50+
51+
kv.x() = k.x() * _v;
52+
kv.y() = k.y() * _v;
53+
kv.z() = k.z() * _v;
54+
kv.w() = k.w() * _v;
55+
56+
s.x() = s.x() * td.x() + kv.x();
57+
s.y() = s.y() * td.y() + kv.y();
58+
s.z() = s.z() * td.z() + kv.z();
59+
s.w() = s.w() * td.w() + kv.w();
60+
61+
y += r.x() * s.x();
62+
y += r.y() * s.y();
63+
y += r.z() * s.z();
64+
y += r.w() * s.w();
65+
}
66+
dst[t] = y * scale;
67+
}
68+
#pragma unroll
69+
for (u_int i = 0; i < head_size; i++) {
70+
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
71+
}
72+
});
73+
});
74+
}
75+
76+
void ggml_sycl_op_gated_linear_attn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
77+
const float * k_d = static_cast<const float *>(dst->src[0]->data);
78+
const float * v_d = static_cast<const float *>(dst->src[1]->data);
79+
const float * r_d = static_cast<const float *>(dst->src[2]->data);
80+
const float * td_d = static_cast<const float *>(dst->src[3]->data);
81+
const float * s_d = static_cast<const float *>(dst->src[4]->data);
82+
83+
const int64_t B = dst->src[4]->ne[1];
84+
const int64_t T = dst->src[0]->ne[2];
85+
const int64_t C = dst->ne[0];
86+
const int64_t H = dst->src[0]->ne[1];
87+
88+
dpct::queue_ptr stream = ctx.stream();
89+
GGML_ASSERT(dst->src[4]->type == GGML_TYPE_F32);
90+
GGML_ASSERT(C % H == 0);
91+
GGML_ASSERT(C / H == 64 || C / H == 128);
92+
93+
float scale;
94+
memcpy(&scale, dst->op_params, sizeof(float));
95+
96+
float * dst_d = (float *) dst->data;
97+
98+
if (C / H == 64) {
99+
gated_linear_attn_f32_kernel<64>(stream, B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d);
100+
} else {
101+
gated_linear_attn_f32_kernel<128>(stream, B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d);
102+
}
103+
}

ggml/src/ggml-sycl/gla.hpp

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,8 @@
1+
#ifndef GGML_SYCL_GLA_HPP
2+
#define GGML_SYCL_GLA_HPP
3+
4+
#include "common.hpp"
5+
6+
void ggml_sycl_op_gated_linear_attn(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
7+
8+
#endif // GGML_SYCL_GLA_HPP

0 commit comments

Comments
 (0)