@@ -4526,7 +4526,7 @@ class XLMRobertaModel(BertModel):
45264526 def __init__ (self , dir_model : Path , ftype : gguf .LlamaFileType , fname_out : Path , ** kwargs : Any ):
45274527 hparams = kwargs .pop ("hparams" , None )
45284528 if hparams is None :
4529- hparams = ModelBase .load_hparams (dir_model )
4529+ hparams = ModelBase .load_hparams (dir_model , False )
45304530
45314531 if lora_names := hparams .get ("lora_adaptations" ):
45324532 self ._lora_names = lora_names
@@ -4579,15 +4579,13 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
45794579 # Split out each LoRA in their own GGUF
45804580 for i , lora_writer in enumerate (self ._lora_files .values ()):
45814581 new_name = self .map_tensor_name (name [:- 9 ]) + name [- 7 :].lower ()
4582- data_qtype = gguf .GGMLQuantizationType .F32
45834582 data = data_torch [i , :, :]
45844583 # Transpose/flip token_embd/types into correct shape
45854584 if new_name == "token_embd.weight.lora_b" :
45864585 data = data .T
45874586 elif new_name .startswith ("token_types.weight." ):
45884587 new_name = new_name [:- 1 ] + ("a" if new_name [- 1 :] == "b" else "b" )
4589- data = gguf .quants .quantize (data .numpy (), data_qtype )
4590- lora_writer .add_tensor (new_name , data , raw_dtype = data_qtype )
4588+ lora_writer .add_tensor (new_name , data .float ().numpy (), raw_dtype = gguf .GGMLQuantizationType .F32 )
45914589
45924590 return []
45934591
0 commit comments