@@ -815,6 +815,9 @@ def get_vocab_base_pre(self, tokenizer) -> str:
815815 if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35" :
816816 # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
817817 res = "minerva-7b"
818+ if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664" :
819+ # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
820+ res = "hunyuan"
818821
819822 if res is None :
820823 logger .warning ("\n " )
@@ -6788,6 +6791,160 @@ def set_gguf_parameters(self):
67886791 super ().set_gguf_parameters ()
67896792 self .gguf_writer .add_audio_stack_factor (self .global_config ["stack_factor" ])
67906793
6794+
6795+ @ModelBase .register ("HunYuanMoEV1ForCausalLM" )
6796+ class HunYuanMoEModel (TextModel ):
6797+ model_arch = gguf .MODEL_ARCH .HUNYUAN_MOE
6798+
6799+ def __init__ (self , * args , ** kwargs ):
6800+ super ().__init__ (* args , ** kwargs )
6801+ # For handling tied embeddings
6802+ self ._tok_embd = None
6803+
6804+ def set_vocab (self ):
6805+ from transformers import AutoTokenizer
6806+ tokenizer = AutoTokenizer .from_pretrained (self .dir_model , trust_remote_code = True )
6807+
6808+ # 1. Get the pre-tokenizer identifier hash
6809+ tokpre = self .get_vocab_base_pre (tokenizer )
6810+
6811+ # 2. Reverse-engineer the merges list from mergeable_ranks
6812+ merges = []
6813+ vocab = {}
6814+ mergeable_ranks = tokenizer .mergeable_ranks
6815+ for token , rank in mergeable_ranks .items ():
6816+ vocab [QwenModel .token_bytes_to_string (token )] = rank
6817+ if len (token ) == 1 :
6818+ continue
6819+ merged = QwenModel .bpe (mergeable_ranks , token , max_rank = rank )
6820+ if len (merged ) == 2 : # todo this is an assert in Qwen, why?
6821+ merges .append (' ' .join (map (QwenModel .token_bytes_to_string , merged )))
6822+
6823+ # 3. Generate the tokens and toktypes lists
6824+ vocab_size = self .hparams ["vocab_size" ]
6825+ assert tokenizer .vocab_size == vocab_size
6826+ special_tokens = tokenizer .special_tokens
6827+ reverse_vocab = {id_ : encoded_tok for encoded_tok , id_ in {** vocab , ** special_tokens }.items ()}
6828+ tokens : list [str ] = []
6829+ toktypes : list [int ] = []
6830+ for i in range (vocab_size ):
6831+ if i not in reverse_vocab :
6832+ tokens .append (f"[PAD{ i } ]" )
6833+ toktypes .append (gguf .TokenType .UNUSED )
6834+ else :
6835+ token = reverse_vocab [i ]
6836+ tokens .append (token )
6837+ if i in special_tokens .values ():
6838+ toktypes .append (gguf .TokenType .CONTROL )
6839+ else :
6840+ toktypes .append (gguf .TokenType .NORMAL )
6841+
6842+ # 4. Write all vocab-related fields to the GGUF writer
6843+ self .gguf_writer .add_tokenizer_model ("gpt2" )
6844+ self .gguf_writer .add_tokenizer_pre (tokpre )
6845+ self .gguf_writer .add_token_list (tokens )
6846+ self .gguf_writer .add_token_types (toktypes )
6847+ self .gguf_writer .add_token_merges (merges )
6848+
6849+ # 5. Add special tokens and chat templates
6850+ special_vocab = gguf .SpecialVocab (self .dir_model , load_merges = False )
6851+ special_vocab .add_to_gguf (self .gguf_writer )
6852+ # FIX for BOS token: Overwrite incorrect id read from config.json
6853+ self .gguf_writer .add_bos_token_id (127959 ) # <|bos|>
6854+
6855+ def set_gguf_parameters (self ):
6856+ super ().set_gguf_parameters ()
6857+ hparams = self .hparams
6858+
6859+ self .gguf_writer .add_expert_count (hparams ["num_experts" ])
6860+ self .gguf_writer .add_expert_shared_feed_forward_length (hparams ["intermediate_size" ])
6861+
6862+ moe_intermediate_size = hparams ["moe_intermediate_size" ]
6863+ assert all (n == moe_intermediate_size [0 ] for n in moe_intermediate_size )
6864+ self .gguf_writer .add_expert_feed_forward_length (moe_intermediate_size [0 ])
6865+
6866+ moe_topk = hparams ["moe_topk" ]
6867+ assert all (topk == moe_topk [0 ] for topk in moe_topk )
6868+ self .gguf_writer .add_expert_used_count (moe_topk [0 ])
6869+
6870+ moe_shared_expert = hparams ["num_shared_expert" ]
6871+ assert all (n == moe_shared_expert [0 ] for n in moe_shared_expert )
6872+ self .gguf_writer .add_expert_shared_count (moe_shared_expert [0 ])
6873+
6874+ # Rope
6875+ rope_scaling = hparams .get ("rope_scaling" , {})
6876+ if rope_scaling .get ("type" ) == "dynamic" :
6877+ # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
6878+ # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
6879+ alpha = rope_scaling .get ("alpha" , 1000 )
6880+ base = hparams .get ("rope_theta" , 10000.0 )
6881+ dim = (hparams ["hidden_size" ] // hparams ["num_attention_heads" ]) # 128
6882+ scaled_base = base * (alpha ** (dim / (dim - 2 ))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
6883+ self .gguf_writer .add_rope_freq_base (scaled_base )
6884+ self .gguf_writer .add_rope_scaling_type (gguf .RopeScalingType .NONE )
6885+ self .gguf_writer .add_rope_scaling_factor (1 )
6886+ # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
6887+ self .gguf_writer .add_rope_scaling_orig_ctx_len (256 * 1024 ) # 256k context length
6888+ self .gguf_writer .add_context_length (256 * 1024 ) # 256k context length
6889+
6890+ # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
6891+ assert alpha == 1000 and base == 10000.0 and dim == 128 and self .hparams ["max_position_embeddings" ] in [32 * 1024 , 256 * 1024 ] , \
6892+ "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
6893+
6894+ _experts : list [dict [str , Tensor ]] | None = None
6895+
6896+ def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
6897+ if name == "model.embed_tokens.weight" :
6898+ self ._tok_embd = data_torch .clone ()
6899+
6900+ if name == "lm_head.weight" :
6901+ if self .hparams .get ("tie_word_embeddings" , False ):
6902+ logger .info ("Skipping tied output layer 'lm_head.weight'" )
6903+ return []
6904+
6905+ if name .find ("mlp.experts" ) != - 1 :
6906+ n_experts = self .hparams ["num_experts" ]
6907+ assert bid is not None
6908+
6909+ if self ._experts is None :
6910+ self ._experts = [{} for _ in range (self .block_count )]
6911+
6912+ self ._experts [bid ][name ] = data_torch
6913+
6914+ if len (self ._experts [bid ]) >= n_experts * 3 :
6915+ # merge the experts into a single 3d tensor
6916+ tensors : list [tuple [str , Tensor ]] = []
6917+ for w_name in ["down_proj" , "gate_proj" , "up_proj" ]:
6918+ datas : list [Tensor ] = []
6919+
6920+ for xid in range (n_experts ):
6921+ ename = f"model.layers.{ bid } .mlp.experts.{ xid } .{ w_name } .weight"
6922+ datas .append (self ._experts [bid ][ename ])
6923+ del self ._experts [bid ][ename ]
6924+
6925+ data_torch = torch .stack (datas , dim = 0 )
6926+ merged_name = f"model.layers.{ bid } .mlp.experts.{ w_name } .weight"
6927+ new_name = self .map_tensor_name (merged_name )
6928+ tensors .append ((new_name , data_torch ))
6929+
6930+ return tensors
6931+ else :
6932+ return []
6933+
6934+ return [(self .map_tensor_name (name ), data_torch )]
6935+
6936+ def prepare_tensors (self ):
6937+ super ().prepare_tensors ()
6938+ if self ._experts is not None :
6939+ experts = [k for d in self ._experts for k in d .keys ()]
6940+ if len (experts ) > 0 :
6941+ raise ValueError (f"Unprocessed experts: { experts } " )
6942+
6943+
6944+ @ModelBase .register ("SmolLM3ForCausalLM" )
6945+ class SmolLM3Model (LlamaModel ):
6946+ model_arch = gguf .MODEL_ARCH .SMOLLM3
6947+
67916948###### CONVERSION LOGIC ######
67926949
67936950
0 commit comments