@@ -103,7 +103,7 @@ static std::vector<float> softmax(const std::vector<float>& logits) {
103103 return probs;
104104}
105105
106- static results_log_softmax log_softmax (int n_vocab, const float * logits, int tok) {
106+ static results_log_softmax log_softmax (int64_t n_vocab, const float * logits, int tok) {
107107 float max_logit = logits[0 ];
108108 for (int i = 1 ; i < n_vocab; ++i) {
109109 max_logit = std::max (max_logit, logits[i]);
@@ -122,7 +122,7 @@ static inline int nearest_int(float fval) {
122122 return (i & 0x007fffff ) - 0x00400000 ;
123123}
124124
125- static double log_softmax (int n_vocab, const float * logits, uint16_t * log_prob, int tok) {
125+ static double log_softmax (int64_t n_vocab, const float * logits, uint16_t * log_prob, int tok) {
126126 float max_logit = logits[0 ];
127127 float min_logit = logits[0 ];
128128 for (int i = 1 ; i < n_vocab; ++i) {
@@ -153,7 +153,7 @@ static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob
153153}
154154
155155static void process_logits (
156- int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
156+ int64_t n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
157157 double & nll, double & nll2, float * logit_history, float * prob_history
158158) {
159159 std::mutex mutex;
@@ -187,7 +187,7 @@ static void process_logits(
187187 }
188188}
189189
190- static void process_logits (std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token,
190+ static void process_logits (std::ostream& out, int64_t n_vocab, const float * logits, const int * tokens, int n_token,
191191 std::vector<std::thread> & workers, std::vector<uint16_t > & log_probs, double & nll, double & nll2) {
192192 std::mutex mutex;
193193 const int nv = 2 *((n_vocab + 1 )/2 ) + 4 ;
@@ -234,7 +234,7 @@ struct kl_divergence_result {
234234 size_t count = 0.0 ;
235235};
236236
237- static std::pair<double , float > log_softmax (int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
237+ static std::pair<double , float > log_softmax (int64_t n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
238238 float max_logit = logits[0 ];
239239 int imax = 0 ;
240240 for (int i = 1 ; i < n_vocab; ++i) {
@@ -281,7 +281,9 @@ static std::pair<double, float> log_softmax(int n_vocab, const float * logits, c
281281 kld.sum_kld += sum;
282282 kld.sum_kld2 += sum*sum;
283283 ++kld.count ;
284- if (imax == imax_base) ++kld.n_same_top ;
284+ if (imax == imax_base) {
285+ ++kld.n_same_top ;
286+ }
285287
286288 const float p_base = expf (-nll_base);
287289 const float p = expf (-nll);
@@ -295,7 +297,7 @@ static std::pair<double, float> log_softmax(int n_vocab, const float * logits, c
295297 return std::make_pair (sum, p_diff);
296298}
297299
298- static void process_logits (int n_vocab, const float * logits, const int * tokens, int n_token,
300+ static void process_logits (int64_t n_vocab, const float * logits, const int * tokens, int n_token,
299301 std::vector<std::thread> & workers, const std::vector<uint16_t > & base_log_probs, kl_divergence_result & kld,
300302 float * kld_values, float * p_diff_values) {
301303 std::mutex mutex;
@@ -383,9 +385,10 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
383385 const int n_chunk_max = (tokens.size () - calc_chunk + params.ppl_stride - 1 ) / params.ppl_stride ;
384386
385387 const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min (params.n_chunks , n_chunk_max);
386- const int n_vocab = llama_n_vocab (llama_get_model (ctx));
387388 const int n_batch = params.n_batch ;
388389
390+ const int64_t n_vocab = llama_n_vocab (llama_get_model (ctx));
391+
389392 int count = 0 ;
390393 double nll = 0.0 ;
391394
@@ -521,9 +524,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
521524 const int n_chunk_max = tokens.size () / n_ctx;
522525
523526 const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min (params.n_chunks , n_chunk_max);
524- const int n_vocab = llama_n_vocab (llama_get_model (ctx));
525527 const int n_batch = params.n_batch ;
526528
529+ const int64_t n_vocab = llama_n_vocab (llama_get_model (ctx));
530+
527531 int count = 0 ;
528532 double nll = 0.0 ;
529533 double nll2 = 0.0 ;
@@ -723,7 +727,7 @@ static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<
723727
724728#define K_TOKEN_CHUNK 4
725729
726- static void compute_logprobs (const float * batch_logits, int n_vocab, std::vector<std::thread>& workers,
730+ static void compute_logprobs (const float * batch_logits, int64_t n_vocab, std::vector<std::thread>& workers,
727731 const std::vector<std::pair<size_t , llama_token>>& eval_pairs, std::vector<float >& eval_results) {
728732 if (eval_results.size () != eval_pairs.size ()) {
729733 eval_results.resize (eval_pairs.size ());
@@ -877,10 +881,11 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
877881
878882 double acc = 0 .0f ;
879883
880- const int n_vocab = llama_n_vocab (llama_get_model (ctx));
881884 const int n_ctx = llama_n_ctx (ctx);
882885 const int n_batch = params.n_batch ;
883886
887+ const int64_t n_vocab = llama_n_vocab (llama_get_model (ctx));
888+
884889 const int max_tasks_per_batch = 32 ;
885890 const int max_seq = std::min (4 *max_tasks_per_batch, (int ) llama_n_seq_max (ctx));
886891
@@ -1158,10 +1163,11 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
11581163
11591164 LOG_INF (" %s : calculating winogrande score over selected tasks.\n " , __func__);
11601165
1161- const int n_vocab = llama_n_vocab (llama_get_model (ctx));
11621166 const int n_ctx = llama_n_ctx (ctx);
11631167 const int n_batch = params.n_batch ;
11641168
1169+ const int64_t n_vocab = llama_n_vocab (llama_get_model (ctx));
1170+
11651171 const int max_tasks_per_batch = 128 ;
11661172 const int max_seq = std::min (2 *max_tasks_per_batch, (int ) llama_n_seq_max (ctx));
11671173
@@ -1509,10 +1515,11 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
15091515
15101516 LOG (" \n task\t acc_norm\n " );
15111517
1512- const int n_vocab = llama_n_vocab (llama_get_model (ctx));
15131518 const int n_ctx = llama_n_ctx (ctx);
15141519 const int n_batch = params.n_batch ;
15151520
1521+ const int64_t n_vocab = llama_n_vocab (llama_get_model (ctx));
1522+
15161523 const int max_tasks_per_batch = 32 ;
15171524 const int max_seq = std::min (4 *max_tasks_per_batch, (int ) llama_n_seq_max (ctx));
15181525
@@ -1709,15 +1716,16 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
17091716 __func__, params.logits_file .c_str (), n_ctx, params.n_ctx );
17101717 }
17111718
1712- int n_vocab, n_chunk;
1719+ int64_t n_vocab;
1720+ int64_t n_chunk;
17131721 in.read ((char *)&n_vocab, sizeof (n_vocab));
17141722 in.read ((char *)&n_chunk, sizeof (n_chunk));
17151723 if (in.fail ()) {
17161724 LOG_ERR (" %s: failed reading n_vocab, n_chunk from %s\n " , __func__, params.logits_file .c_str ());
17171725 return ;
17181726 }
17191727 if (n_vocab != llama_n_vocab (llama_get_model (ctx))) {
1720- LOG_ERR (" %s: inconsistent vocabulary (%d vs %d)\n " , __func__, n_vocab, llama_n_vocab (llama_get_model (ctx)));
1728+ LOG_ERR (" %s: inconsistent vocabulary (%lld vs %d)\n " , __func__, n_vocab, llama_n_vocab (llama_get_model (ctx)));
17211729 }
17221730
17231731 std::vector<llama_token> tokens (n_ctx * n_chunk);
0 commit comments