Skip to content

Commit 4a231eb

Browse files
committed
Fix Flake errors.
1 parent 8501cb3 commit 4a231eb

File tree

1 file changed

+12
-7
lines changed

1 file changed

+12
-7
lines changed

convert_hf_to_gguf.py

Lines changed: 12 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -2829,25 +2829,30 @@ def set_gguf_parameters(self):
28292829
self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
28302830
self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_layer_interval"])
28312831

2832+
def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
2833+
if "experts" in new_name:
2834+
return gguf.GGMLQuantizationType.F16
2835+
return super().tensor_force_quant(name, new_name, bid, n_dims)
2836+
28322837
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
28332838
# Modify correction bias name as in DeepseekV2
28342839
if name.endswith("e_score_correction_bias"):
28352840
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
2836-
2841+
28372842
# skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
28382843
match = re.match(r"model.mtp_block.(\d+)", name)
28392844
if match:
28402845
return []
2841-
2846+
28422847
# skip all other MTP tensors for now
28432848
match = re.match(r"model.mtp_emb_norm.(\d+)", name)
28442849
if match:
28452850
return []
2846-
2851+
28472852
match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
28482853
if match:
28492854
return []
2850-
2855+
28512856
match = re.match(r"model.mtp_linear_proj.(\d+)", name)
28522857
if match:
28532858
return []
@@ -2874,16 +2879,16 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
28742879
datas.append(self._experts[bid][ename_to_retrieve])
28752880
del self._experts[bid][ename_to_retrieve]
28762881

2877-
data_torch = torch.stack(datas, dim=0)
2882+
data_torch = torch.stack(datas, dim=0)
28782883
merged_name = f"layers.{bid}.mlp.experts.{w_name}.weight"
28792884
new_name = self.map_tensor_name(merged_name)
28802885
tensors.append((new_name, data_torch))
2881-
2886+
28822887
return tensors
28832888
else:
28842889
return []
28852890
return [(self.map_tensor_name(name), data_torch)]
2886-
2891+
28872892
def prepare_tensors(self):
28882893
super().prepare_tensors()
28892894

0 commit comments

Comments
 (0)