@@ -397,13 +397,6 @@ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
397397 }
398398}
399399
400- llm_graph_input_attn_kv_hybrid_recurrent::llm_graph_input_attn_kv_hybrid_recurrent (
401- const llama_hparams & hparams,
402- const llama_cparams & cparams,
403- const llama_kv_cache_hybrid_recurrent_state * kv_state) :
404- llm_graph_input_attn_kv_unified(hparams, cparams, kv_state->get_state_attn ()) {
405- }
406-
407400//
408401// llm_graph_context
409402//
@@ -1262,7 +1255,9 @@ ggml_tensor * llm_graph_context::build_attn(
12621255 ggml_build_forward_expand (gf, k_cur);
12631256 ggml_build_forward_expand (gf, v_cur);
12641257
1265- const auto * kv_state = static_cast <const llama_kv_cache_unified_state *>(mstate);
1258+ // NOTE: For hybrid caches, this may be a child of mstate, so we use the one
1259+ // encapsulated in inp
1260+ const auto * kv_state = inp->kv_state ;
12661261
12671262 // store to KV cache
12681263 {
@@ -1294,10 +1289,10 @@ ggml_tensor * llm_graph_context::build_attn(
12941289 return cur;
12951290}
12961291
1297- llm_graph_input_attn_kv_hybrid_recurrent * llm_graph_context::build_attn_inp_kv_hybrid_recurrent () const {
1292+ llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_hybrid_recurrent () const {
12981293 const auto * kv_state = static_cast <const llama_kv_cache_hybrid_recurrent_state *>(mstate);
12991294
1300- auto inp = std::make_unique<llm_graph_input_attn_kv_hybrid_recurrent >(hparams, cparams, kv_state);
1295+ auto inp = std::make_unique<llm_graph_input_attn_kv_unified >(hparams, cparams, kv_state-> get_state_attn () );
13011296
13021297 {
13031298 GGML_ASSERT (hparams.swa_type == LLAMA_SWA_TYPE_NONE && " Hybrid recurrent is not supported with SWA attention layers" );
@@ -1311,25 +1306,7 @@ llm_graph_input_attn_kv_hybrid_recurrent * llm_graph_context::build_attn_inp_kv_
13111306 inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast (ctx0, inp->self_kq_mask , GGML_TYPE_F16) : inp->self_kq_mask ;
13121307 }
13131308
1314- return (llm_graph_input_attn_kv_hybrid_recurrent *) res->add_input (std::move (inp));
1315- }
1316-
1317- ggml_tensor * llm_graph_context::build_attn (
1318- llm_graph_input_attn_kv_hybrid_recurrent * inp,
1319- ggml_cgraph * gf,
1320- ggml_tensor * wo,
1321- ggml_tensor * wo_b,
1322- ggml_tensor * q_cur,
1323- ggml_tensor * k_cur,
1324- ggml_tensor * v_cur,
1325- ggml_tensor * kq_b,
1326- ggml_tensor * v_mla,
1327- float kq_scale,
1328- int il) const {
1329- return build_attn (
1330- static_cast <llm_graph_input_attn_kv_unified *>(inp),
1331- gf, wo, wo_b, q_cur, k_cur, v_cur, kq_b, v_mla, kq_scale, il
1332- );
1309+ return (llm_graph_input_attn_kv_unified *) res->add_input (std::move (inp));
13331310}
13341311
13351312llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unified_iswa () const {
@@ -1472,13 +1449,17 @@ ggml_tensor * llm_graph_context::build_attn(
14721449}
14731450
14741451ggml_tensor * llm_graph_context::build_recurrent_state (
1475- ggml_cgraph * gf,
1476- ggml_tensor * s,
1477- ggml_tensor * state_copy,
1478- int32_t state_size,
1479- int32_t n_seqs,
1480- bool avoid_copies) const {
1481- const auto * kv_state = static_cast <const llama_kv_cache_recurrent_state *>(mstate);
1452+ ggml_cgraph * gf,
1453+ ggml_tensor * s,
1454+ ggml_tensor * state_copy,
1455+ int32_t state_size,
1456+ int32_t n_seqs,
1457+ bool avoid_copies,
1458+ const llama_kv_cache_recurrent_state * kv_state) const {
1459+
1460+ if (kv_state == nullptr ) {
1461+ kv_state = static_cast <const llama_kv_cache_recurrent_state *>(mstate);
1462+ }
14821463
14831464 const auto n_kv = kv_state->get_n_kv ();
14841465 const auto kv_head = kv_state->get_head ();
0 commit comments