@@ -598,6 +598,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
598598 hparams.use_kq_norm = false;
599599 }
600600 } break;
601+ case LLM_ARCH_ARCEE:
602+ {
603+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
604+
605+ // Arcee uses the same structure as Llama
606+ switch (hparams.n_layer) {
607+ case 36: type = LLM_TYPE_4B; break;
608+ default: type = LLM_TYPE_UNKNOWN;
609+ }
610+ } break;
601611 case LLM_ARCH_DECI:
602612 {
603613 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -4123,6 +4133,37 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
41234133 layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
41244134 }
41254135 } break;
4136+ case LLM_ARCH_ARCEE:
4137+ {
4138+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
4139+
4140+ // output
4141+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
4142+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
4143+
4144+ // if output is NULL, init from the input tok embed
4145+ if (output == NULL) {
4146+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
4147+ }
4148+
4149+ for (int i = 0; i < n_layer; ++i) {
4150+ auto & layer = layers[i];
4151+
4152+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
4153+
4154+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
4155+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
4156+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
4157+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
4158+
4159+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
4160+
4161+ layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
4162+
4163+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
4164+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
4165+ }
4166+ } break;
41264167 default:
41274168 throw std::runtime_error("unknown architecture");
41284169 }
@@ -13194,6 +13235,141 @@ struct llm_build_bailingmoe : public llm_graph_context {
1319413235 }
1319513236};
1319613237
13238+ struct llm_build_arcee : public llm_graph_context {
13239+ llm_build_arcee(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
13240+ const int64_t n_embd_head = hparams.n_embd_head_v;
13241+
13242+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
13243+ GGML_ASSERT(n_embd_head == hparams.n_rot);
13244+
13245+ ggml_tensor * cur;
13246+ ggml_tensor * inpL;
13247+
13248+ inpL = build_inp_embd(model.tok_embd);
13249+
13250+ // inp_pos - contains the positions
13251+ ggml_tensor * inp_pos = build_inp_pos();
13252+
13253+ auto * inp_attn = build_attn_inp_kv_unified();
13254+
13255+ const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
13256+
13257+ for (int il = 0; il < n_layer; ++il) {
13258+ ggml_tensor * inpSA = inpL;
13259+
13260+ // norm
13261+ cur = build_norm(inpL,
13262+ model.layers[il].attn_norm, NULL,
13263+ LLM_NORM_RMS, il);
13264+ cb(cur, "attn_norm", il);
13265+
13266+ // self-attention
13267+ {
13268+ // rope freq factors for llama3; may return nullptr for llama2 and other models
13269+ ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
13270+
13271+ // compute Q and K and RoPE them
13272+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
13273+ cb(Qcur, "Qcur", il);
13274+ if (model.layers[il].bq) {
13275+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
13276+ cb(Qcur, "Qcur", il);
13277+ }
13278+
13279+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
13280+ cb(Kcur, "Kcur", il);
13281+ if (model.layers[il].bk) {
13282+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
13283+ cb(Kcur, "Kcur", il);
13284+ }
13285+
13286+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
13287+ cb(Vcur, "Vcur", il);
13288+ if (model.layers[il].bv) {
13289+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
13290+ cb(Vcur, "Vcur", il);
13291+ }
13292+
13293+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
13294+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
13295+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
13296+
13297+ Qcur = ggml_rope_ext(
13298+ ctx0, Qcur, inp_pos, rope_factors,
13299+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
13300+ ext_factor, attn_factor, beta_fast, beta_slow
13301+ );
13302+
13303+ Kcur = ggml_rope_ext(
13304+ ctx0, Kcur, inp_pos, rope_factors,
13305+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
13306+ ext_factor, attn_factor, beta_fast, beta_slow
13307+ );
13308+
13309+ cb(Qcur, "Qcur", il);
13310+ cb(Kcur, "Kcur", il);
13311+ cb(Vcur, "Vcur", il);
13312+
13313+ cur = build_attn(inp_attn, gf,
13314+ model.layers[il].wo, model.layers[il].bo,
13315+ Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
13316+ cb(cur, "attn_out", il);
13317+ }
13318+
13319+ if (il == n_layer - 1) {
13320+ // skip computing output for unused tokens
13321+ ggml_tensor * inp_out_ids = build_inp_out_ids();
13322+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
13323+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
13324+ }
13325+
13326+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
13327+ cb(ffn_inp, "ffn_inp", il);
13328+
13329+ // feed-forward network
13330+ // ARCEE uses relu^2 instead of swiglu
13331+ cur = build_norm(ffn_inp,
13332+ model.layers[il].ffn_norm, NULL,
13333+ LLM_NORM_RMS, il);
13334+ cb(cur, "ffn_norm", il);
13335+
13336+ cur = build_ffn(cur,
13337+ model.layers[il].ffn_up, NULL, NULL,
13338+ NULL, NULL, NULL,
13339+ model.layers[il].ffn_down, NULL, NULL,
13340+ NULL,
13341+ LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
13342+ cb(cur, "ffn_out", il);
13343+
13344+ cur = ggml_add(ctx0, cur, ffn_inp);
13345+ cb(cur, "ffn_out", il);
13346+
13347+ cur = build_cvec(cur, il);
13348+ cb(cur, "l_out", il);
13349+
13350+ // input for next layer
13351+ inpL = cur;
13352+ }
13353+
13354+ cur = inpL;
13355+
13356+ cur = build_norm(cur,
13357+ model.output_norm, NULL,
13358+ LLM_NORM_RMS, -1);
13359+
13360+ cb(cur, "result_norm", -1);
13361+ res->t_embd = cur;
13362+
13363+ // lm_head
13364+ cur = build_lora_mm(model.output, cur);
13365+
13366+ cb(cur, "result_output", -1);
13367+ res->t_logits = cur;
13368+
13369+ ggml_build_forward_expand(gf, cur);
13370+ }
13371+ };
13372+
1319713373llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
1319813374 llama_memory_i * res;
1319913375
@@ -13532,6 +13708,10 @@ llm_graph_result_ptr llama_model::build_graph(
1353213708 {
1353313709 llm = std::make_unique<llm_build_bailingmoe>(*this, params, gf);
1353413710 } break;
13711+ case LLM_ARCH_ARCEE:
13712+ {
13713+ llm = std::make_unique<llm_build_arcee>(*this, params, gf);
13714+ } break;
1353513715 default:
1353613716 GGML_ABORT("fatal error");
1353713717 }
@@ -13681,6 +13861,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
1368113861 case LLM_ARCH_GRANITE_MOE:
1368213862 case LLM_ARCH_CHAMELEON:
1368313863 case LLM_ARCH_BAILINGMOE:
13864+ case LLM_ARCH_ARCEE:
1368413865 return LLAMA_ROPE_TYPE_NORM;
1368513866
1368613867 // the pairs of head values are offset by n_rot/2
0 commit comments