Skip to content

Commit 53a2ccb

Browse files
committed
minor update and add direct conv in benchmarking
1 parent 2ec76aa commit 53a2ccb

File tree

2 files changed

+79
-11
lines changed

2 files changed

+79
-11
lines changed

ggml/src/ggml-cuda/conv2d-implicit.cu

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -185,9 +185,10 @@ static __global__ void conv2d_implicit_kernel(const float * __restrict__ input,
185185

186186
#pragma unroll
187187
for (int i = 0; i < 8; ++i){
188+
auto weight_frag_i = ggml_cuda_cast<float>(weight_frag[subcrs % 2][i]);
188189
#pragma unroll
189190
for (int j = 0; j < 8; ++j){
190-
output_frag[i][j] += ggml_cuda_cast<float>(weight_frag[subcrs % 2][i]) * input_frag[subcrs % 2][j];
191+
output_frag[i][j] += weight_frag_i * input_frag[subcrs % 2][j];
191192
}
192193
}
193194
}

tests/test-conv2d-implicit.cpp

Lines changed: 77 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -52,8 +52,8 @@ void load_model(test_model & model, int ic, int oc, int iw, int ih, bool use_gpu
5252
}
5353

5454
// Convert adata to fp16 format
55-
// std::vector<ggml_fp16_t> hadata(KW * KH * IC * OC);
56-
// ggml_fp32_to_fp16_row(adata.data(), hadata.data(), KW * KH * IC * OC);
55+
std::vector<ggml_fp16_t> hadata(KW * KH * IC * OC);
56+
ggml_fp32_to_fp16_row(adata.data(), hadata.data(), KW * KH * IC * OC);
5757

5858
// Initialize bdata
5959
std::vector<float> bdata(IW * IH * IC * N);
@@ -63,7 +63,8 @@ void load_model(test_model & model, int ic, int oc, int iw, int ih, bool use_gpu
6363

6464
size_t buffer_size = 0;
6565
{
66-
buffer_size += KW * KH * IC * OC * ggml_type_size(GGML_TYPE_F32); // tensor a
66+
// buffer_size += KW * KH * IC * OC * ggml_type_size(GGML_TYPE_F32); // tensor a
67+
buffer_size += KW * KH * IC * OC * ggml_type_size(GGML_TYPE_F16); // tensor a
6768
buffer_size += IW * IH * IC * N * ggml_type_size(GGML_TYPE_F32); // tensor b
6869
buffer_size += 1024; // overhead
6970
}
@@ -111,7 +112,7 @@ void load_model(test_model & model, int ic, int oc, int iw, int ih, bool use_gpu
111112
model.ctx = ggml_init(params);
112113

113114
// create tensors
114-
model.a = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F32, KW, KH, IC, OC);
115+
model.a = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F16, KW, KH, IC, OC);
115116
model.b = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F32, IW, IH, IC, N);
116117

117118
// create a allocator
@@ -122,9 +123,9 @@ void load_model(test_model & model, int ic, int oc, int iw, int ih, bool use_gpu
122123

123124
// load data to buffer
124125
if(ggml_backend_is_cpu(model.backend)) {
125-
memcpy(model.a->data, adata.data(), ggml_nbytes(model.a));
126+
memcpy(model.a->data, hadata.data(), ggml_nbytes(model.a));
126127
} else {
127-
ggml_backend_tensor_set(model.a, adata.data(), 0, ggml_nbytes(model.a));
128+
ggml_backend_tensor_set(model.a, hadata.data(), 0, ggml_nbytes(model.a));
128129
}
129130

130131
// alloc memory
@@ -208,6 +209,48 @@ struct ggml_cgraph * build_graph_1(const test_model& model) {
208209

209210

210211

212+
// recalculate for avoid fragmentation
213+
// struct ggml_tensor* conv2d_res = ggml_conv_2d(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
214+
// ggml_set_name(conv2d_res, "conv2d_res");
215+
// ggml_build_forward_expand(gf, conv2d_res);
216+
// int64_t *ne = conv2d_res->ne;
217+
// printf("conv2d: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
218+
219+
220+
// struct ggml_tensor* wino_res = ggml_conv_2d_implicitgemm(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
221+
struct ggml_tensor* wino_res = ggml_conv_2d_direct(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
222+
ggml_set_name(wino_res, "wino_res");
223+
ggml_build_forward_expand(gf, wino_res);
224+
// ne = wino_res->ne;
225+
// printf("wino: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
226+
ggml_free(ctx0);
227+
return gf;
228+
}
229+
230+
struct ggml_cgraph * build_graph_2(const test_model& model) {
231+
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
232+
static std::vector<uint8_t> buf(buf_size);
233+
234+
struct ggml_init_params params0 = {
235+
/*.mem_size =*/ buf_size,
236+
/*.mem_buffer =*/ buf.data(),
237+
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
238+
};
239+
240+
// create a temporally context to build the graph
241+
struct ggml_context * ctx0 = ggml_init(params0);
242+
243+
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
244+
245+
int s0 = 1;
246+
int s1 = 1;
247+
int p0 = 1;
248+
int p1 = 1;
249+
int d0 = 1;
250+
int d1 = 1;
251+
252+
253+
211254
// recalculate for avoid fragmentation
212255
// struct ggml_tensor* conv2d_res = ggml_conv_2d(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
213256
// ggml_set_name(conv2d_res, "conv2d_res");
@@ -217,6 +260,7 @@ struct ggml_cgraph * build_graph_1(const test_model& model) {
217260

218261

219262
struct ggml_tensor* wino_res = ggml_conv_2d_implicitgemm(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
263+
// struct ggml_tensor* wino_res = ggml_conv_2d_direct(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
220264
ggml_set_name(wino_res, "wino_res");
221265
ggml_build_forward_expand(gf, wino_res);
222266
// ne = wino_res->ne;
@@ -353,16 +397,39 @@ int main(void)
353397
double run_time1;
354398
std::vector<float> wino_data = compute_graph(model, allocr, build_graph_1, iterations, &run_time1);
355399

400+
401+
ggml_gallocr_free(allocr);
402+
403+
allocr = NULL;
404+
405+
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
406+
407+
//create the worst case graph for memory usage estimation
408+
gf = build_graph_2(model);
409+
410+
// compute the required memory
411+
ggml_gallocr_reserve(allocr, gf);
412+
size_t mem_size2 = ggml_gallocr_get_buffer_size(allocr, 0);
413+
// fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0f/1024.0f);
414+
415+
416+
struct ggml_cgraph * gf_res_2 = NULL;
417+
418+
double run_time2;
419+
wino_data = compute_graph(model, allocr, build_graph_2, iterations, &run_time2);
420+
421+
356422
if(k==0) {
357423
k = 1;
358-
fprintf(stderr, "| (IC, OC, IW, IH) | im2col+GEMM TIME | im2col+GEMM VRAM | implicit GEMM TIME | implicit GEMM VRAM \n");
359-
fprintf(stderr, "| --- | --- | --- | --- | --- \n");
424+
fprintf(stderr, "| (IC, OC, IW, IH) | im2col+GEMM TIME | im2col+GEMM VRAM | direct TIME | direct VRAM | implicit GEMM TIME | implicit GEMM VRAM \n");
425+
fprintf(stderr, "| --- | --- | --- | --- | --- | --- | --- \n");
360426
}
361427

362-
fprintf(stderr, " | (%d, %d, %d, %d) | %.2f ms | %.2f MB | %.2f ms | %.2f MB\n",
428+
fprintf(stderr, " | (%d, %d, %d, %d) | %.2f ms | %.2f MB | %.2f ms | %.2f MB | %.2f ms | %.2f MB\n",
363429
std::get<0>(c), std::get<1>(c), std::get<2>(c), std::get<3>(c),
364430
run_time0, mem_size0/1024.0f/1024.0f,
365-
run_time1, mem_size1/1024.0f/1024.0f);
431+
run_time1, mem_size1/1024.0f/1024.0f,
432+
run_time2, mem_size2/1024.0f/1024.0f);
366433

367434

368435
// for(int i = 0; i < ggml_nelements(wino_res); i++) {

0 commit comments

Comments
 (0)