@@ -482,6 +482,7 @@ struct vk_device_struct {
482482 vk_pipeline pipeline_rwkv_wkv6_f32;
483483 vk_pipeline pipeline_rwkv_wkv7_f32;
484484 vk_pipeline pipeline_opt_step_adamw_f32;
485+ vk_pipeline pipeline_conv2d_f32;
485486 vk_pipeline pipeline_conv2d_dw_whcn_f32;
486487 vk_pipeline pipeline_conv2d_dw_cwhn_f32;
487488
@@ -875,6 +876,38 @@ struct vk_op_rwkv_wkv7_push_constants {
875876 uint32_t H;
876877};
877878
879+ struct vk_op_conv2d_push_constants {
880+ uint32_t Cout;
881+ uint32_t Cin;
882+ uint32_t N;
883+
884+ uint32_t KW;
885+ uint32_t KH;
886+ uint32_t W;
887+ uint32_t H;
888+ uint32_t OW;
889+ uint32_t OH;
890+
891+ uint32_t s0;
892+ uint32_t s1;
893+ uint32_t p0;
894+ uint32_t p1;
895+ uint32_t d0;
896+ uint32_t d1;
897+
898+ uint32_t nb01;
899+ uint32_t nb02;
900+ uint32_t nb03;
901+
902+ uint32_t nb11;
903+ uint32_t nb12;
904+ uint32_t nb13;
905+
906+ uint32_t nb1;
907+ uint32_t nb2;
908+ uint32_t nb3;
909+ };
910+
878911struct vk_op_conv2d_dw_push_constants {
879912 uint32_t ne;
880913 uint32_t batches;
@@ -976,16 +1009,33 @@ class vk_memory_logger {
9761009class vk_perf_logger {
9771010public:
9781011 void print_timings() {
1012+ if(timings.empty()){
1013+ return;
1014+ }
9791015 std::cerr << "----------------\nVulkan Timings:" << std::endl;
9801016 for (const auto& t : timings) {
9811017 uint64_t total = 0;
9821018 for (const auto& time : t.second) {
9831019 total += time;
9841020 }
985- std::cerr << t.first << ": " << t.second.size() << " x " << (total / t.second.size() / 1000.0) << " us" << std::endl;
1021+ std::cerr << t.first << ": " << t.second.size() << " x " << (total / t.second.size() / 1000.0) << " us";
1022+
1023+ // If we have as many flops entries as timing entries for the op, then compute and log the flops/S.
1024+ auto it = flops.find(t.first);
1025+ if(it != flops.end() && (it->second).size() == t.second.size()){
1026+ uint64_t total_nflops = 0;
1027+ for(const auto& elem : it->second){
1028+ total_nflops += elem;
1029+ }
1030+ std::cout << " (" << (double(total_nflops)/(1000.0*1000.0*1000.0)) / (double(total)/(1000.0*1000.0*1000.0)) << " GFLOPS/s)";
1031+ }
1032+
1033+
1034+ std::cerr << std::endl;
9861035 }
9871036
9881037 timings.clear();
1038+ flops.clear();
9891039 }
9901040
9911041 void log_timing(const ggml_tensor * node, uint64_t time) {
@@ -1004,12 +1054,33 @@ class vk_perf_logger {
10041054 name += " m=" + std::to_string(m) + " n=" + std::to_string(n) + " k=" + std::to_string(k);
10051055 }
10061056 timings[name].push_back(time);
1057+ flops[name].push_back( m*n*(k+(k-1)) );
10071058 return;
10081059 }
1060+ if(node->op == GGML_OP_CONV_2D){
1061+ std::string name = ggml_op_name(node->op);
1062+ ggml_tensor * knl = node->src[0];
1063+ uint64_t OW = node->ne[0];
1064+ uint64_t OH = node->ne[1];
1065+ uint64_t N = node->ne[3];
1066+ uint64_t Cout = node->ne[2];
1067+ uint64_t KW = knl->ne[0];
1068+ uint64_t KH = knl->ne[1];
1069+ uint64_t Cin = knl->ne[2];
1070+ // KxCRS @ CRSxNPQ = KxNPQ -> M=K, K=CRS, N=NPQ
1071+ uint64_t size_M = Cout;
1072+ uint64_t size_K = Cin*KW*KH;
1073+ uint64_t size_N = N*OW*OH;
1074+ uint64_t n_flops = size_M*size_N*(size_K+(size_K-1));
1075+ flops[name].push_back(n_flops);
1076+ timings[name].push_back(time);
1077+ return;
1078+ }
10091079 timings[ggml_op_name(node->op)].push_back(time);
10101080 }
10111081private:
10121082 std::map<std::string, std::vector<uint64_t>> timings;
1083+ std::map<std::string, std::vector<uint64_t>> flops;
10131084};
10141085
10151086struct ggml_backend_vk_context {
@@ -2955,6 +3026,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
29553026
29563027 ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
29573028
3029+ ggml_vk_create_pipeline(device, device->pipeline_conv2d_f32, "conv2d_f32", conv2d_f32_len, conv2d_f32_data, "main", 3, sizeof(vk_op_conv2d_push_constants), {128 /* equal to BS_K in the shader */, 128 /* equal to BS_NPQ in the shader */, 1}, {}, 1);
3030+
29583031 ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f32, "conv2d_dw_whcn_f32", conv2d_dw_whcn_f32_len, conv2d_dw_whcn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
29593032 ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f32, "conv2d_dw_cwhn_f32", conv2d_dw_cwhn_f32_len, conv2d_dw_cwhn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
29603033
@@ -6803,6 +6876,16 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
68036876 return ctx->device->pipeline_leaky_relu_f32;
68046877 }
68056878 return nullptr;
6879+ case GGML_OP_CONV_2D:
6880+ if (src0->type == GGML_TYPE_F32 &&
6881+ src1->type == GGML_TYPE_F32 &&
6882+ dst->type == GGML_TYPE_F32 &&
6883+ ggml_is_contiguous(src0) &&
6884+ ggml_is_contiguous(src1) &&
6885+ ggml_is_contiguous(dst)) {
6886+ return ctx->device->pipeline_conv2d_f32;
6887+ }
6888+ return nullptr;
68066889 case GGML_OP_CONV_2D_DW:
68076890 if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
68086891 if (ggml_is_contiguous(src1)) {
@@ -7125,6 +7208,30 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
71257208 const uint32_t OW = dst->ne[0];
71267209 elements = { N * OC * OH * OW, 1, 1};
71277210 } break;
7211+ case GGML_OP_CONV_2D:
7212+ {
7213+ // src0 - kernel: [KW, KH, Cin, Cout]
7214+ // src1 - input: [W, H, Cin, N]
7215+ // dst - result: [OW, OH, Cout, N]
7216+
7217+ // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
7218+ auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
7219+ return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
7220+ };
7221+ // parallelize in {OW/BS_K, OH/BS_NPQ, 1}
7222+ int64_t W = src1->ne[0];
7223+ int64_t H = src1->ne[1];
7224+ int64_t KW = src0->ne[0];
7225+ int64_t KH = src0->ne[1];
7226+ int64_t Cout = src0->ne[3];
7227+ int64_t N = src1->ne[3];
7228+ int64_t OH = calc_conv_output_size(H, KH, dst->op_params[1], dst->op_params[3], dst->op_params[5]);
7229+ int64_t OW = calc_conv_output_size(W, KW, dst->op_params[0], dst->op_params[2], dst->op_params[4]);
7230+ int64_t NPQ = N*OW*OH;
7231+
7232+ // Tile output matrix to (K/NB_K, NPQ/NB_NPQ, 1) workgroups
7233+ elements = {static_cast<uint32_t>(Cout), static_cast<uint32_t>(NPQ), 1};
7234+ } break;
71287235 case GGML_OP_ADD:
71297236 case GGML_OP_SUB:
71307237 case GGML_OP_DIV:
@@ -7991,6 +8098,55 @@ static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, c
79918098 }, dryrun);
79928099}
79938100
8101+ static void ggml_vk_conv_2d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
8102+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
8103+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
8104+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
8105+
8106+ GGML_TENSOR_BINARY_OP_LOCALS
8107+
8108+ GGML_ASSERT(nb00 == sizeof(float));
8109+ GGML_ASSERT(nb10 == sizeof(float));
8110+ GGML_ASSERT(nb0 == sizeof(float));
8111+
8112+ vk_op_conv2d_push_constants p{};
8113+ p.Cout = static_cast<uint32_t>(ne03);
8114+ p.Cin = static_cast<uint32_t>(ne02);
8115+ p.N = static_cast<uint32_t>(ne13);
8116+
8117+ p.KW = static_cast<uint32_t>(ne00);
8118+ p.KH = static_cast<uint32_t>(ne01);
8119+ p.W = static_cast<uint32_t>(ne10);
8120+ p.H = static_cast<uint32_t>(ne11);
8121+ p.OW = static_cast<uint32_t>(ne0);
8122+ p.OH = static_cast<uint32_t>(ne1);
8123+
8124+ p.s0 = static_cast<uint32_t>(dst->op_params[0]);
8125+ p.s1 = static_cast<uint32_t>(dst->op_params[1]);
8126+ p.p0 = static_cast<uint32_t>(dst->op_params[2]);
8127+ p.p1 = static_cast<uint32_t>(dst->op_params[3]);
8128+ p.d0 = static_cast<uint32_t>(dst->op_params[4]);
8129+ p.d1 = static_cast<uint32_t>(dst->op_params[5]);
8130+
8131+ p.nb01 = static_cast<uint32_t>(nb01/nb00);
8132+ p.nb02 = static_cast<uint32_t>(nb02/nb00);
8133+ p.nb03 = static_cast<uint32_t>(nb03/nb00);
8134+
8135+ p.nb11 = static_cast<uint32_t>(nb11/nb10);
8136+ p.nb12 = static_cast<uint32_t>(nb12/nb10);
8137+ p.nb13 = static_cast<uint32_t>(nb13/nb10);
8138+
8139+ p.nb1 = static_cast<uint32_t>(nb1 / nb0);
8140+ p.nb2 = static_cast<uint32_t>(nb2 / nb0);
8141+ p.nb3 = static_cast<uint32_t>(nb3 / nb0);
8142+
8143+ GGML_ASSERT(ne03 == ne2);
8144+ GGML_ASSERT(ne02 == ne12);
8145+
8146+ ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_2D, std::move(p), dryrun);
8147+
8148+ }
8149+
79948150static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
79958151 vk_op_conv2d_dw_push_constants p{};
79968152 p.ne = ggml_nelements(dst);
@@ -9053,6 +9209,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
90539209 case GGML_OP_TIMESTEP_EMBEDDING:
90549210 case GGML_OP_CONV_TRANSPOSE_1D:
90559211 case GGML_OP_POOL_2D:
9212+ case GGML_OP_CONV_2D:
90569213 case GGML_OP_CONV_2D_DW:
90579214 case GGML_OP_RWKV_WKV6:
90589215 case GGML_OP_RWKV_WKV7:
@@ -9120,6 +9277,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
91209277 case GGML_OP_TIMESTEP_EMBEDDING:
91219278 case GGML_OP_CONV_TRANSPOSE_1D:
91229279 case GGML_OP_POOL_2D:
9280+ case GGML_OP_CONV_2D:
91239281 case GGML_OP_CONV_2D_DW:
91249282 case GGML_OP_LEAKY_RELU:
91259283 {
@@ -9326,6 +9484,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
93269484 case GGML_OP_POOL_2D:
93279485 ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun);
93289486
9487+ break;
9488+ case GGML_OP_CONV_2D:
9489+ ggml_vk_conv_2d(ctx, compute_ctx, src0, src1, node, dryrun);
9490+
93299491 break;
93309492 case GGML_OP_CONV_2D_DW:
93319493 ggml_vk_conv_2d_dw(ctx, compute_ctx, src0, src1, node, dryrun);
@@ -9456,6 +9618,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph *
94569618 case GGML_OP_TIMESTEP_EMBEDDING:
94579619 case GGML_OP_CONV_TRANSPOSE_1D:
94589620 case GGML_OP_POOL_2D:
9621+ case GGML_OP_CONV_2D:
94599622 case GGML_OP_CONV_2D_DW:
94609623 case GGML_OP_RWKV_WKV6:
94619624 case GGML_OP_RWKV_WKV7:
@@ -10617,6 +10780,14 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
1061710780 return true;
1061810781 case GGML_OP_CONV_TRANSPOSE_1D:
1061910782 return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
10783+ case GGML_OP_CONV_2D:
10784+ // Channel-contiguous format is not supported yet.
10785+ return (op->src[0]->type == GGML_TYPE_F32 &&
10786+ op->src[1]->type == GGML_TYPE_F32 &&
10787+ op->type == GGML_TYPE_F32 &&
10788+ ggml_is_contiguous(op->src[0]) &&
10789+ ggml_is_contiguous(op->src[1]) &&
10790+ ggml_is_contiguous(op));
1062010791 default:
1062110792 return false;
1062210793 }
@@ -11175,6 +11346,14 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
1117511346 const int32_t p1 = tensor->op_params[6];
1117611347
1117711348 tensor_clone = ggml_pool_2d(ggml_ctx, src_clone[0], op, k0, k1, s0, s1, p0, p1);
11349+ } else if (tensor->op == GGML_OP_CONV_2D) {
11350+ const int32_t s0 = tensor->op_params[0];
11351+ const int32_t s1 = tensor->op_params[1];
11352+ const int32_t p0 = tensor->op_params[2];
11353+ const int32_t p1 = tensor->op_params[3];
11354+ const int32_t d0 = tensor->op_params[4];
11355+ const int32_t d1 = tensor->op_params[5];
11356+ tensor_clone = ggml_conv_2d(ggml_ctx, src_clone[0], src_clone[1], s0, s1, p0, p1, d0, d1);
1117811357 } else if (tensor->op == GGML_OP_LEAKY_RELU) {
1117911358 const float * op_params = (const float *)tensor->op_params;
1118011359 tensor_clone = ggml_leaky_relu(ggml_ctx, src_clone[0], op_params[0], false);
0 commit comments