Skip to content

Commit 75e1ff7

Browse files
committed
refactor: Remove n_embd_k/v_gqa from recurrent cache
This is no longer needed now that there are separate implementations #13979 (comment) Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <[email protected]>
1 parent 4db34ac commit 75e1ff7

File tree

1 file changed

+16
-23
lines changed

1 file changed

+16
-23
lines changed

src/llama-kv-cache-recurrent.cpp

Lines changed: 16 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -69,9 +69,6 @@ llama_kv_cache_recurrent::llama_kv_cache_recurrent(
6969
continue;
7070
}
7171

72-
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
73-
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
74-
7572
const char * dev_name = "CPU";
7673

7774
ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
@@ -90,8 +87,8 @@ llama_kv_cache_recurrent::llama_kv_cache_recurrent(
9087
throw std::runtime_error("failed to create ggml context for kv cache");
9188
}
9289

93-
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
94-
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
90+
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, hparams.n_embd_k_s()*kv_size);
91+
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, hparams.n_embd_v_s()*kv_size);
9592
ggml_format_name(k, "cache_k_l%d", i);
9693
ggml_format_name(v, "cache_v_l%d", i);
9794
k_l[i] = k;
@@ -754,14 +751,13 @@ void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std
754751
// Iterate and write all the keys first, each row is a cell
755752
// Get whole range at a time
756753
for (uint32_t il = 0; il < n_layer; ++il) {
757-
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
758754

759755
// Write key type
760756
const int32_t k_type_i = (int32_t)k_l[il]->type;
761757
io.write(&k_type_i, sizeof(k_type_i));
762758

763759
// Write row size of key
764-
const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
760+
const uint64_t k_size_row = ggml_row_size(k_l[il]->type, hparams.n_embd_k_s());
765761
io.write(&k_size_row, sizeof(k_size_row));
766762

767763
// Read each range of cells of k_size length each into tmp_buf and write out
@@ -774,14 +770,13 @@ void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std
774770

775771
if (!v_trans) {
776772
for (uint32_t il = 0; il < n_layer; ++il) {
777-
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
778773

779774
// Write value type
780775
const int32_t v_type_i = (int32_t)v_l[il]->type;
781776
io.write(&v_type_i, sizeof(v_type_i));
782777

783778
// Write row size of value
784-
const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
779+
const uint64_t v_size_row = ggml_row_size(v_l[il]->type, hparams.n_embd_v_s());
785780
io.write(&v_size_row, sizeof(v_size_row));
786781

787782
// Read each range of cells of v_size length each into tmp_buf and write out
@@ -795,7 +790,7 @@ void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std
795790
// When v is transposed, we also need the element size and get the element ranges from each row
796791
const uint32_t kv_size = size;
797792
for (uint32_t il = 0; il < n_layer; ++il) {
798-
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
793+
const uint32_t n_embd_v_s = hparams.n_embd_v_s();
799794

800795
// Write value type
801796
const int32_t v_type_i = (int32_t)v_l[il]->type;
@@ -806,10 +801,10 @@ void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std
806801
io.write(&v_size_el, sizeof(v_size_el));
807802

808803
// Write GQA embedding size
809-
io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
804+
io.write(&n_embd_v_s, sizeof(n_embd_v_s));
810805

811806
// For each row, we get the element values of each cell
812-
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
807+
for (uint32_t j = 0; j < n_embd_v_s; ++j) {
813808
// Read each range of cells of v_size_el length each into tmp_buf and write out
814809
for (const auto & range : cell_ranges) {
815810
const size_t range_size = range.second - range.first;
@@ -942,7 +937,6 @@ bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t ce
942937

943938
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
944939
for (uint32_t il = 0; il < n_layer; ++il) {
945-
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
946940

947941
// Read type of key
948942
int32_t k_type_i_ref;
@@ -956,7 +950,7 @@ bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t ce
956950
// Read row size of key
957951
uint64_t k_size_row_ref;
958952
io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
959-
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
953+
const size_t k_size_row = ggml_row_size(k_l[il]->type, hparams.n_embd_k_s());
960954
if (k_size_row != k_size_row_ref) {
961955
LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
962956
return false;
@@ -970,7 +964,6 @@ bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t ce
970964

971965
if (!v_trans) {
972966
for (uint32_t il = 0; il < n_layer; ++il) {
973-
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
974967

975968
// Read type of value
976969
int32_t v_type_i_ref;
@@ -984,7 +977,7 @@ bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t ce
984977
// Read row size of value
985978
uint64_t v_size_row_ref;
986979
io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
987-
const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
980+
const size_t v_size_row = ggml_row_size(v_l[il]->type, hparams.n_embd_v_s());
988981
if (v_size_row != v_size_row_ref) {
989982
LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
990983
return false;
@@ -998,7 +991,7 @@ bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t ce
998991
} else {
999992
// For each layer, read the values for each cell (transposed)
1000993
for (uint32_t il = 0; il < n_layer; ++il) {
1001-
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
994+
const uint32_t n_embd_v_s = hparams.n_embd_v_s();
1002995

1003996
// Read type of value
1004997
int32_t v_type_i_ref;
@@ -1018,17 +1011,17 @@ bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t ce
10181011
return false;
10191012
}
10201013

1021-
// Read GQA embedding size
1022-
uint32_t n_embd_v_gqa_ref;
1023-
io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
1024-
if (n_embd_v_gqa != n_embd_v_gqa_ref) {
1025-
LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
1014+
// Read state embedding size
1015+
uint32_t n_embd_v_s_ref;
1016+
io.read_to(&n_embd_v_s_ref, sizeof(n_embd_v_s_ref));
1017+
if (n_embd_v_s != n_embd_v_s_ref) {
1018+
LLAMA_LOG_ERROR("%s: mismatched state embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_s, n_embd_v_s_ref, il);
10261019
return false;
10271020
}
10281021

10291022
if (cell_count) {
10301023
// For each row in the transposed matrix, read the values for the whole cell range
1031-
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
1024+
for (uint32_t j = 0; j < n_embd_v_s; ++j) {
10321025
const size_t dst_offset = (head + j * size) * v_size_el;
10331026
ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
10341027
}

0 commit comments

Comments
 (0)