Skip to content

Commit 7d7da0b

Browse files
committed
d_ssm -> d_inner;
1 parent d2f46f1 commit 7d7da0b

File tree

6 files changed

+19
-27
lines changed

6 files changed

+19
-27
lines changed

convert_hf_to_gguf.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6674,7 +6674,8 @@ def set_gguf_parameters(self):
66746674

66756675
# Add Falcon Mamba2 specific configuration
66766676
self.gguf_writer.add_uint32("falcon_h1.attention.head_dim", self.hparams["head_dim"])
6677-
self.gguf_writer.add_uint32("falcon_h1.ssm.mamba_d_ssm", self.hparams["mamba_d_ssm"])
6677+
self.gguf_writer.add_uint32("falcon_h1.ssm.mamba_d_inner", self.hparams["mamba_d_ssm"])
6678+
self.gguf_writer.add_ssm_inner_size(self.hparams["mamba_d_ssm"])
66786679
self.gguf_writer.add_uint32("falcon_h1.num_attention_heads", self.find_hparam(["num_attention_heads"]))
66796680
self.gguf_writer.add_uint32("falcon_h1.num_key_value_heads",
66806681
self.find_hparam(["num_key_value_heads"], optional=True) or

src/llama-arch.cpp

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -219,7 +219,6 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
219219
{ LLM_KV_TOKENIZER_FIM_SEP_ID, "tokenizer.ggml.fim_sep_token_id" },
220220

221221
{ LLM_KV_SSM_HEAD_DIM, "%s.ssm.head_dim" },
222-
{ LLM_KV_MAMBA_D_SSM, "%s.ssm.mamba_d_ssm" },
223222

224223
{ LLM_KV_FALCON_H1_MAMBA_RMS_NORM, "%s.mamba_rms_norm" },
225224

src/llama-arch.h

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -160,7 +160,6 @@ enum llm_kv {
160160
// Falcon-H1 specific
161161
LLM_KV_ATTN_HEAD_DIM,
162162
LLM_KV_SSM_HEAD_DIM,
163-
LLM_KV_MAMBA_D_SSM,
164163
LLM_KV_N_LAYER,
165164
LLM_KV_FALCON_H1_MAMBA_RMS_NORM,
166165

src/llama-hparams.cpp

Lines changed: 2 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -76,12 +76,7 @@ uint32_t llama_hparams::n_embd_r() const {
7676
// Corresponds to Mamba's conv_states size
7777

7878
// check if the architecture is using d_ssm
79-
if (ssm_mamba_d_ssm > 0) {
80-
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * (ssm_mamba_d_ssm + 2*ssm_n_group*ssm_d_state);
81-
} else {
82-
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * (ssm_d_inner + 2*ssm_n_group*ssm_d_state);
83-
}
84-
79+
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * (ssm_d_inner + 2*ssm_n_group*ssm_d_state);
8580
}
8681

8782
uint32_t llama_hparams::n_embd_s() const {
@@ -91,7 +86,7 @@ uint32_t llama_hparams::n_embd_s() const {
9186
}
9287

9388
// corresponds to Mamba's ssm_states size
94-
return (ssm_mamba_d_ssm > 0 ? ssm_d_state * ssm_mamba_d_ssm : ssm_d_state * ssm_d_inner);
89+
return ssm_d_state * ssm_d_inner;
9590
}
9691

9792
bool llama_hparams::is_recurrent(uint32_t il) const {

src/llama-hparams.h

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -116,7 +116,6 @@ struct llama_hparams {
116116
uint32_t ssm_dt_rank = 0;
117117
uint32_t ssm_n_group = 0;
118118
uint32_t ssm_head_dim = 0;
119-
uint32_t ssm_mamba_d_ssm = 0;
120119

121120
uint32_t attn_head_dim = 0;
122121
bool mamba_rms_norm = false;

src/llama-model.cpp

Lines changed: 15 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -1556,7 +1556,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
15561556
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
15571557

15581558
// SSM parameters
1559-
ml.get_key(LLM_KV_MAMBA_D_SSM, hparams.ssm_mamba_d_ssm);
15601559
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
15611560
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
15621561
ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
@@ -4520,7 +4519,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
45204519
const int64_t ssm_conv_kernel_size = hparams.ssm_d_conv; // ssm_conv_kernel_size
45214520
const int64_t ssm_n_groups = hparams.ssm_n_group; // ssm_n_groups
45224521
const int64_t ssm_state_size = hparams.ssm_d_state; // ssm_state_size
4523-
const int64_t ssm_intermediate_size = hparams.ssm_mamba_d_ssm > 0 ? hparams.ssm_mamba_d_ssm : int(hparams.mamba_expand * hidden_size); // TODO expand
4522+
const int64_t ssm_intermediate_size = hparams.ssm_d_inner; // TODO expand
45244523
const int64_t ssm_num_heads = hparams.ssm_dt_rank; // ssm_num_heads
45254524
const int64_t ssm_conv_dim = ssm_intermediate_size + 2 * ssm_n_groups * ssm_state_size;
45264525
const int64_t ssm_projection_size = ssm_intermediate_size + ssm_conv_dim + ssm_num_heads;
@@ -14777,10 +14776,10 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1477714776
const auto kv_head = kv_state->get_head();
1477814777

1477914778
const int64_t d_conv = hparams.ssm_d_conv;
14780-
const int64_t d_ssm = hparams.ssm_mamba_d_ssm;
14779+
const int64_t d_inner = hparams.ssm_d_inner;
1478114780
const int64_t d_state = hparams.ssm_d_state;
1478214781
const int64_t n_head = hparams.ssm_dt_rank;
14783-
const int64_t head_dim = hparams.ssm_head_dim == 0 ? d_ssm / n_head : hparams.ssm_head_dim;
14782+
const int64_t head_dim = hparams.ssm_head_dim == 0 ? d_inner / n_head : hparams.ssm_head_dim;
1478414783
const int64_t n_group = hparams.ssm_n_group;
1478514784
const int64_t n_seqs = ubatch.n_seqs;
1478614785

@@ -14794,7 +14793,7 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1479414793
ggml_tensor * ssm_states_all = kv_state->get_s_l(il);
1479514794

1479614795
ggml_tensor * conv = build_rs(inp, gf, conv_states_all, hparams.n_embd_r(), n_seqs);
14797-
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_ssm + 2*n_group*d_state, n_seqs);
14796+
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs);
1479814797

1479914798
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
1480014799
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
@@ -14807,22 +14806,22 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1480714806

1480814807
// split the above in three
1480914808
ggml_tensor * z = ggml_view_4d(ctx0, zxBCdt, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*zxBCdt->nb[0], zxBCdt->nb[1], zxBCdt->nb[2], 0);
14810-
ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_ssm + 2*n_group*d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], d_ssm*ggml_element_size(zxBCdt));
14811-
ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], (2*d_ssm + 2*n_group*d_state)*ggml_element_size(zxBCdt));
14809+
ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_inner + 2*n_group*d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], d_inner*ggml_element_size(zxBCdt));
14810+
ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], (2*d_inner + 2*n_group*d_state)*ggml_element_size(zxBCdt));
1481214811

1481314812
// conv
1481414813
{
1481514814
// => {d_conv - 1 + n_seq_tokens, d_inner + 2*n_group*d_state, n_seqs}
1481614815
ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, xBC), 0);
1481714816

1481814817
// copy last (d_conv - 1) columns back into the state cache
14819-
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_ssm + 2*n_group*d_state, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
14818+
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
1482014819

1482114820
ggml_build_forward_expand(gf,
1482214821
ggml_cpy(ctx0, last_conv,
1482314822
ggml_view_1d(ctx0, conv_states_all,
14824-
(d_conv - 1)*(d_ssm + 2*n_group*d_state)*(n_seqs),
14825-
kv_head*(d_conv - 1)*(d_ssm + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
14823+
(d_conv - 1)*(d_inner + 2*n_group*d_state)*(n_seqs),
14824+
kv_head*(d_conv - 1)*(d_inner + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
1482614825

1482714826
// 1D convolution
1482814827
// The equivalent is to make a self-overlapping view of conv_x
@@ -14846,9 +14845,9 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1484614845
// These correspond to V K Q in SSM/attention duality
1484714846
ggml_tensor * x = ggml_view_4d(ctx0, xBC, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*xBC->nb[0], xBC->nb[1], xBC->nb[2], 0);
1484814847

14849-
ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], d_ssm*ggml_element_size(xBC));
14848+
ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], d_inner*ggml_element_size(xBC));
1485014849

14851-
ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], (d_ssm + n_group*d_state)*ggml_element_size(xBC));
14850+
ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], (d_inner + n_group*d_state)*ggml_element_size(xBC));
1485214851

1485314852
// {n_head, n_seq_tokens, n_seqs}
1485414853
dt = ggml_add(ctx0, ggml_cont(ctx0, dt), model.layers[il].ssm_dt_b);
@@ -14871,8 +14870,8 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1487114870
// store last states
1487214871
ggml_build_forward_expand(gf,
1487314872
ggml_cpy(ctx0,
14874-
ggml_view_1d(ctx0, y_ssm, d_state*d_ssm*n_seqs, ggml_nelements(x)*x->nb[0]),
14875-
ggml_view_1d(ctx0, ssm_states_all, d_state*d_ssm*n_seqs, kv_head*d_state*d_ssm*ggml_element_size(ssm_states_all))));
14873+
ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, ggml_nelements(x)*x->nb[0]),
14874+
ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
1487614875

1487714876
ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_head, n_seq_tokens, n_seqs, x->nb[1], n_head*x->nb[1], n_seq_tokens*n_head*x->nb[1], 0);
1487814877

@@ -14883,11 +14882,11 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1488314882

1488414883
// grouped RMS norm
1488514884
if (hparams.mamba_rms_norm){
14886-
y = ggml_reshape_4d(ctx0, y, d_ssm / n_group, n_group, n_seq_tokens, n_seqs);
14885+
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
1488714886
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
1488814887
}
1488914888

14890-
y = ggml_reshape_3d(ctx0, y, d_ssm, n_seq_tokens, n_seqs);
14889+
y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
1489114890

1489214891
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
1489314892
cur = build_lora_mm(model.layers[il].ssm_out, y);

0 commit comments

Comments
 (0)