@@ -1556,7 +1556,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
15561556 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
15571557
15581558 // SSM parameters
1559- ml.get_key(LLM_KV_MAMBA_D_SSM, hparams.ssm_mamba_d_ssm);
15601559 ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
15611560 ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
15621561 ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
@@ -4520,7 +4519,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
45204519 const int64_t ssm_conv_kernel_size = hparams.ssm_d_conv; // ssm_conv_kernel_size
45214520 const int64_t ssm_n_groups = hparams.ssm_n_group; // ssm_n_groups
45224521 const int64_t ssm_state_size = hparams.ssm_d_state; // ssm_state_size
4523- const int64_t ssm_intermediate_size = hparams.ssm_mamba_d_ssm > 0 ? hparams.ssm_mamba_d_ssm : int(hparams.mamba_expand * hidden_size) ; // TODO expand
4522+ const int64_t ssm_intermediate_size = hparams.ssm_d_inner ; // TODO expand
45244523 const int64_t ssm_num_heads = hparams.ssm_dt_rank; // ssm_num_heads
45254524 const int64_t ssm_conv_dim = ssm_intermediate_size + 2 * ssm_n_groups * ssm_state_size;
45264525 const int64_t ssm_projection_size = ssm_intermediate_size + ssm_conv_dim + ssm_num_heads;
@@ -14777,10 +14776,10 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1477714776 const auto kv_head = kv_state->get_head();
1477814777
1477914778 const int64_t d_conv = hparams.ssm_d_conv;
14780- const int64_t d_ssm = hparams.ssm_mamba_d_ssm ;
14779+ const int64_t d_inner = hparams.ssm_d_inner ;
1478114780 const int64_t d_state = hparams.ssm_d_state;
1478214781 const int64_t n_head = hparams.ssm_dt_rank;
14783- const int64_t head_dim = hparams.ssm_head_dim == 0 ? d_ssm / n_head : hparams.ssm_head_dim;
14782+ const int64_t head_dim = hparams.ssm_head_dim == 0 ? d_inner / n_head : hparams.ssm_head_dim;
1478414783 const int64_t n_group = hparams.ssm_n_group;
1478514784 const int64_t n_seqs = ubatch.n_seqs;
1478614785
@@ -14794,7 +14793,7 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1479414793 ggml_tensor * ssm_states_all = kv_state->get_s_l(il);
1479514794
1479614795 ggml_tensor * conv = build_rs(inp, gf, conv_states_all, hparams.n_embd_r(), n_seqs);
14797- conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_ssm + 2*n_group*d_state, n_seqs);
14796+ conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs);
1479814797
1479914798 // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
1480014799 cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
@@ -14807,22 +14806,22 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1480714806
1480814807 // split the above in three
1480914808 ggml_tensor * z = ggml_view_4d(ctx0, zxBCdt, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*zxBCdt->nb[0], zxBCdt->nb[1], zxBCdt->nb[2], 0);
14810- ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_ssm + 2*n_group*d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], d_ssm *ggml_element_size(zxBCdt));
14811- ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], (2*d_ssm + 2*n_group*d_state)*ggml_element_size(zxBCdt));
14809+ ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_inner + 2*n_group*d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], d_inner *ggml_element_size(zxBCdt));
14810+ ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], (2*d_inner + 2*n_group*d_state)*ggml_element_size(zxBCdt));
1481214811
1481314812 // conv
1481414813 {
1481514814 // => {d_conv - 1 + n_seq_tokens, d_inner + 2*n_group*d_state, n_seqs}
1481614815 ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, xBC), 0);
1481714816
1481814817 // copy last (d_conv - 1) columns back into the state cache
14819- ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_ssm + 2*n_group*d_state, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
14818+ ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
1482014819
1482114820 ggml_build_forward_expand(gf,
1482214821 ggml_cpy(ctx0, last_conv,
1482314822 ggml_view_1d(ctx0, conv_states_all,
14824- (d_conv - 1)*(d_ssm + 2*n_group*d_state)*(n_seqs),
14825- kv_head*(d_conv - 1)*(d_ssm + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
14823+ (d_conv - 1)*(d_inner + 2*n_group*d_state)*(n_seqs),
14824+ kv_head*(d_conv - 1)*(d_inner + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
1482614825
1482714826 // 1D convolution
1482814827 // The equivalent is to make a self-overlapping view of conv_x
@@ -14846,9 +14845,9 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1484614845 // These correspond to V K Q in SSM/attention duality
1484714846 ggml_tensor * x = ggml_view_4d(ctx0, xBC, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*xBC->nb[0], xBC->nb[1], xBC->nb[2], 0);
1484814847
14849- ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], d_ssm *ggml_element_size(xBC));
14848+ ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], d_inner *ggml_element_size(xBC));
1485014849
14851- ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], (d_ssm + n_group*d_state)*ggml_element_size(xBC));
14850+ ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], (d_inner + n_group*d_state)*ggml_element_size(xBC));
1485214851
1485314852 // {n_head, n_seq_tokens, n_seqs}
1485414853 dt = ggml_add(ctx0, ggml_cont(ctx0, dt), model.layers[il].ssm_dt_b);
@@ -14871,8 +14870,8 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1487114870 // store last states
1487214871 ggml_build_forward_expand(gf,
1487314872 ggml_cpy(ctx0,
14874- ggml_view_1d(ctx0, y_ssm, d_state*d_ssm *n_seqs, ggml_nelements(x)*x->nb[0]),
14875- ggml_view_1d(ctx0, ssm_states_all, d_state*d_ssm *n_seqs, kv_head*d_state*d_ssm *ggml_element_size(ssm_states_all))));
14873+ ggml_view_1d(ctx0, y_ssm, d_state*d_inner *n_seqs, ggml_nelements(x)*x->nb[0]),
14874+ ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner *n_seqs, kv_head*d_state*d_inner *ggml_element_size(ssm_states_all))));
1487614875
1487714876 ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_head, n_seq_tokens, n_seqs, x->nb[1], n_head*x->nb[1], n_seq_tokens*n_head*x->nb[1], 0);
1487814877
@@ -14883,11 +14882,11 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1488314882
1488414883 // grouped RMS norm
1488514884 if (hparams.mamba_rms_norm){
14886- y = ggml_reshape_4d(ctx0, y, d_ssm / n_group, n_group, n_seq_tokens, n_seqs);
14885+ y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
1488714886 y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
1488814887 }
1488914888
14890- y = ggml_reshape_3d(ctx0, y, d_ssm , n_seq_tokens, n_seqs);
14889+ y = ggml_reshape_3d(ctx0, y, d_inner , n_seq_tokens, n_seqs);
1489114890
1489214891 // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
1489314892 cur = build_lora_mm(model.layers[il].ssm_out, y);
0 commit comments