@@ -5021,7 +5021,10 @@ void llama_model::print_info() const {
50215021        }
50225022    }
50235023
5024-     if (arch == LLM_ARCH_MAMBA || arch == LLM_ARCH_MAMBA2 || arch == LLM_ARCH_JAMBA) {
5024+     if (arch == LLM_ARCH_MAMBA ||
5025+         arch == LLM_ARCH_MAMBA2 ||
5026+         arch == LLM_ARCH_JAMBA ||
5027+         arch == LLM_ARCH_FALCON_H1) {
50255028        LLAMA_LOG_INFO("%s: ssm_d_conv       = %u\n",     __func__, hparams.ssm_d_conv);
50265029        LLAMA_LOG_INFO("%s: ssm_d_inner      = %u\n",     __func__, hparams.ssm_d_inner);
50275030        LLAMA_LOG_INFO("%s: ssm_d_state      = %u\n",     __func__, hparams.ssm_d_state);
@@ -10292,8 +10295,11 @@ struct llm_graph_context_mamba : public llm_graph_context {
1029210295            y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
1029310296
1029410297            // grouped RMS norm
10295-             y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
10296-             y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
10298+             if (model.layers[il].ssm_norm) {
10299+                 y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
10300+                 y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
10301+             }
10302+ 
1029710303            y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
1029810304
1029910305            // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
@@ -14919,10 +14925,8 @@ struct llm_build_ernie4_5 : public llm_graph_context {
1491914925    }
1492014926};
1492114927
14922- struct llm_build_falcon_h1 : public llm_graph_context {
14923-     const llama_model & model;
14924- 
14925-     llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model)  {
14928+ struct llm_build_falcon_h1 : public llm_graph_context_mamba {
14929+     llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) {
1492614930        const int64_t n_embd_head = hparams.n_embd_head_v;
1492714931
1492814932        ggml_tensor * cur;
@@ -14978,7 +14982,7 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1497814982            cb(Kcur, "Kcur-post-rope", il);
1497914983            cb(Vcur, "Vcur-post-rope", il);
1498014984
14981-             ggml_tensor * attn_out = build_attn(inp, gf,
14985+             ggml_tensor * attn_out = build_attn(inp->get_attn() , gf,
1498214986                    model.layers[il].wo, NULL,
1498314987                    Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
1498414988            cb(attn_out, "attn_out", il);
@@ -14989,7 +14993,7 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1498914993            // Mamba2 layer
1499014994            cb(cur, "ssm_in", il);
1499114995
14992-             ggml_tensor * ssm_out = build_mamba2_layer(inp, gf, cur, ubatch, il);
14996+             ggml_tensor * ssm_out = build_mamba2_layer(inp->get_recr() , gf, cur, model , ubatch, il);
1499314997            cb(ssm_out, "ssm_out", il);
1499414998
1499514999            // // Aggregation
@@ -15045,139 +15049,6 @@ struct llm_build_falcon_h1 : public llm_graph_context {
1504515049
1504615050        ggml_build_forward_expand(gf, cur);
1504715051    }
15048- 
15049-     ggml_tensor * build_mamba2_layer(
15050-         llm_graph_input_mem_hybrid * inp,
15051-                                 ggml_cgraph * gf,
15052-                                 ggml_tensor * cur,
15053-                          const llama_ubatch & ubatch,
15054-                                       int   il) const {
15055-         const auto * kv_state = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
15056- 
15057-         const auto kv_head = kv_state->get_head();
15058- 
15059-         const int64_t d_conv  = hparams.ssm_d_conv;
15060-         const int64_t d_inner = hparams.ssm_d_inner;
15061-         const int64_t d_state = hparams.ssm_d_state;
15062-         const int64_t n_head  = hparams.ssm_dt_rank;
15063-         const int64_t head_dim = d_inner / n_head;
15064-         const int64_t n_group = hparams.ssm_n_group;
15065-         const int64_t n_seqs  = ubatch.n_seqs;
15066- 
15067-         const int64_t n_seq_tokens = ubatch.n_seq_tokens;
15068- 
15069-         GGML_ASSERT(n_seqs != 0);
15070-         GGML_ASSERT(ubatch.equal_seqs);
15071-         GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
15072- 
15073-         ggml_tensor * conv_states_all = kv_state->get_r_l(il);
15074-         ggml_tensor * ssm_states_all  = kv_state->get_s_l(il);
15075- 
15076-         ggml_tensor * conv = build_rs(inp, gf, conv_states_all, hparams.n_embd_r(), n_seqs);
15077-         conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs);
15078- 
15079-         // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
15080-         cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
15081- 
15082-         // d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
15083- 
15084-         // {n_embd, d_in_proj} @ {n_embd, n_seq_tokens, n_seqs} => {d_in_proj, n_seq_tokens, n_seqs}
15085-         ggml_tensor * zxBCdt = build_lora_mm(model.layers[il].ssm_in, cur);
15086-         cb(zxBCdt, "zxBCdt", il);
15087- 
15088-         // split the above in three
15089-         ggml_tensor * z = ggml_view_4d(ctx0, zxBCdt, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*zxBCdt->nb[0], zxBCdt->nb[1], zxBCdt->nb[2], 0);
15090-         ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_inner + 2*n_group*d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], d_inner*ggml_element_size(zxBCdt));
15091-         ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], (2*d_inner + 2*n_group*d_state)*ggml_element_size(zxBCdt));
15092- 
15093-         // conv
15094-         {
15095-             // => {d_conv - 1 + n_seq_tokens, d_inner + 2*n_group*d_state, n_seqs}
15096-             ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, xBC), 0);
15097- 
15098-             // copy last (d_conv - 1) columns back into the state cache
15099-             ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
15100- 
15101-             ggml_build_forward_expand(gf,
15102-                 ggml_cpy(ctx0, last_conv,
15103-                     ggml_view_1d(ctx0, conv_states_all,
15104-                         (d_conv - 1)*(d_inner + 2*n_group*d_state)*(n_seqs),
15105-                         kv_head*(d_conv - 1)*(d_inner + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
15106- 
15107-             // 1D convolution
15108-             // The equivalent is to make a self-overlapping view of conv_x
15109-             // over d_conv columns at each stride in the 3rd dimension,
15110-             // then element-wise multiply that with the conv1d weight,
15111-             // then sum the elements of each row,
15112-             // (the last two steps are a dot product over rows (also doable with mul_mat))
15113-             // then permute away the ne[0] dimension,
15114-             // and then you're left with the resulting x tensor.
15115-             // For simultaneous sequences, all sequences need to have the same length.
15116-             xBC = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
15117- 
15118-             // bias
15119-             xBC = ggml_add(ctx0, xBC, model.layers[il].ssm_conv1d_b);
15120- 
15121-             xBC = ggml_silu(ctx0, xBC);
15122-         }
15123- 
15124-         // ssm
15125-         {
15126-             // These correspond to V K Q in SSM/attention duality
15127-             ggml_tensor * x = ggml_view_4d(ctx0, xBC, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*xBC->nb[0], xBC->nb[1], xBC->nb[2], 0);
15128- 
15129-             ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], d_inner*ggml_element_size(xBC));
15130- 
15131-             ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], (d_inner + n_group*d_state)*ggml_element_size(xBC));
15132- 
15133-             // {n_head, n_seq_tokens, n_seqs}
15134-             dt = ggml_add(ctx0, ggml_cont(ctx0, dt), model.layers[il].ssm_dt_b);
15135- 
15136-             ggml_tensor * A = model.layers[il].ssm_a;
15137- 
15138-             // use the states and the indices provided by build_rs
15139-             // (this is necessary in order to properly use the states before they are overwritten,
15140-             //  while avoiding to make unnecessary copies of the states)
15141-             auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
15142-                 ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, kv_state->get_size());
15143- 
15144-                 // TODO: use semistructured matrices to implement state-space duality
15145-                 // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
15146-                 return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
15147-             };
15148- 
15149-             ggml_tensor * y_ssm = build_rs(inp, gf, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
15150- 
15151-             // store last states
15152-             ggml_build_forward_expand(gf,
15153-                 ggml_cpy(ctx0,
15154-                     ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, ggml_nelements(x)*x->nb[0]),
15155-                     ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
15156- 
15157-             ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_head, n_seq_tokens, n_seqs, x->nb[1], n_head*x->nb[1], n_seq_tokens*n_head*x->nb[1], 0);
15158- 
15159-             // TODO: skip computing output earlier for unused tokens
15160- 
15161-             y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
15162-             y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
15163- 
15164-             // grouped RMS norm
15165-             if (model.layers[il].ssm_norm) {
15166-                 y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
15167-                 y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
15168-             }
15169- 
15170-             y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
15171- 
15172-             // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
15173-             cur = build_lora_mm(model.layers[il].ssm_out, y);
15174-         }
15175- 
15176-         // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
15177-         cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
15178-         cb(cur, "mamba_out", il);
15179-         return cur;
15180-     }
1518115052};
1518215053
1518315054struct llm_build_arcee : public llm_graph_context {
0 commit comments