55#include < string>
66#include < vector>
77
8+ // Add a message to `messages` and store its content in `owned_content`
9+ static void add_message (const std::string &role, const std::string &text,
10+ std::vector<llama_chat_message> &messages,
11+ std::vector<std::unique_ptr<char []>> &owned_content) {
12+ auto content = std::make_unique<char []>(text.size () + 1 );
13+ std::strcpy (content.get (), text.c_str ());
14+ messages.push_back ({role.c_str (), content.get ()});
15+ owned_content.push_back (std::move (content));
16+ }
17+
18+ // Function to apply the chat template and resize `formatted` if needed
19+ static int apply_chat_template (const llama_model *model,
20+ const std::vector<llama_chat_message> &messages,
21+ std::vector<char > &formatted, bool append) {
22+ int result = llama_chat_apply_template (model, nullptr , messages.data (),
23+ messages.size (), append,
24+ formatted.data (), formatted.size ());
25+ if (result > static_cast <int >(formatted.size ())) {
26+ formatted.resize (result);
27+ result = llama_chat_apply_template (model, nullptr , messages.data (),
28+ messages.size (), append,
29+ formatted.data (), formatted.size ());
30+ }
31+
32+ return result;
33+ }
34+
35+ // Function to tokenize the prompt
36+ static int tokenize_prompt (const llama_model *model, const std::string &prompt,
37+ std::vector<llama_token> &prompt_tokens) {
38+ const int n_prompt_tokens = -llama_tokenize (
39+ model, prompt.c_str (), prompt.size (), NULL , 0 , true , true );
40+ prompt_tokens.resize (n_prompt_tokens);
41+ if (llama_tokenize (model, prompt.c_str (), prompt.size (),
42+ prompt_tokens.data (), prompt_tokens.size (), true ,
43+ true ) < 0 ) {
44+ GGML_ABORT (" failed to tokenize the prompt\n " );
45+ }
46+
47+ return n_prompt_tokens;
48+ }
49+
50+ // Check if we have enough space in the context to evaluate this batch
51+ static int check_context_size (const llama_context *ctx,
52+ const llama_batch &batch) {
53+ const int n_ctx = llama_n_ctx (ctx);
54+ const int n_ctx_used = llama_get_kv_cache_used_cells (ctx);
55+ if (n_ctx_used + batch.n_tokens > n_ctx) {
56+ printf (" \033 [0m\n " );
57+ fprintf (stderr, " context size exceeded\n " );
58+ return 1 ;
59+ }
60+
61+ return 0 ;
62+ }
63+
64+ // convert the token to a string
65+ static std::string convert_token_to_string (const llama_model *model,
66+ const llama_token token_id) {
67+ char buf[256 ];
68+ int n = llama_token_to_piece (model, token_id, buf, sizeof (buf), 0 , true );
69+ if (n < 0 ) {
70+ GGML_ABORT (" failed to convert token to piece\n " );
71+ }
72+
73+ return std::string (buf, n);
74+ }
75+
76+ // helper function to evaluate a prompt and generate a response
77+ static int generate (const llama_model *model, llama_sampler *smpl,
78+ llama_context *ctx, const std::string &prompt,
79+ std::string &response) {
80+ std::vector<llama_token> prompt_tokens;
81+ const int n_prompt_tokens = tokenize_prompt (model, prompt, prompt_tokens);
82+ if (n_prompt_tokens < 0 ) {
83+ return 1 ;
84+ }
85+
86+ // prepare a batch for the prompt
87+ llama_batch batch =
88+ llama_batch_get_one (prompt_tokens.data (), prompt_tokens.size ());
89+ llama_token new_token_id;
90+ while (true ) {
91+ check_context_size (ctx, batch);
92+ if (llama_decode (ctx, batch)) {
93+ GGML_ABORT (" failed to decode\n " );
94+ }
95+
96+ // sample the next token
97+ new_token_id = llama_sampler_sample (smpl, ctx, -1 );
98+
99+ // is it an end of generation?
100+ if (llama_token_is_eog (model, new_token_id)) {
101+ break ;
102+ }
103+
104+ const std::string piece = convert_token_to_string (model, new_token_id);
105+ printf (" %s" , piece.c_str ());
106+ fflush (stdout);
107+ response += piece;
108+
109+ // prepare the next batch with the sampled token
110+ batch = llama_batch_get_one (&new_token_id, 1 );
111+ }
112+
113+ return 0 ;
114+ }
115+
8116static void print_usage (int , char ** argv) {
9117 printf (" \n example usage:\n " );
10118 printf (" \n %s -m model.gguf [-c context_size] [-ngl n_gpu_layers]\n " , argv[0 ]);
@@ -66,6 +174,7 @@ int main(int argc, char ** argv) {
66174 llama_model_params model_params = llama_model_default_params ();
67175 model_params.n_gpu_layers = ngl;
68176
177+ // This prints ........
69178 llama_model * model = llama_load_model_from_file (model_path.c_str (), model_params);
70179 if (!model) {
71180 fprintf (stderr , " %s: error: unable to load model\n " , __func__);
@@ -88,107 +197,49 @@ int main(int argc, char ** argv) {
88197 llama_sampler_chain_add (smpl, llama_sampler_init_min_p (0 .05f , 1 ));
89198 llama_sampler_chain_add (smpl, llama_sampler_init_temp (0 .8f ));
90199 llama_sampler_chain_add (smpl, llama_sampler_init_dist (LLAMA_DEFAULT_SEED));
91-
92- // helper function to evaluate a prompt and generate a response
93- auto generate = [&](const std::string & prompt) {
94- std::string response;
95-
96- // tokenize the prompt
97- const int n_prompt_tokens = -llama_tokenize (model, prompt.c_str (), prompt.size (), NULL , 0 , true , true );
98- std::vector<llama_token> prompt_tokens (n_prompt_tokens);
99- if (llama_tokenize (model, prompt.c_str (), prompt.size (), prompt_tokens.data (), prompt_tokens.size (), llama_get_kv_cache_used_cells (ctx) == 0 , true ) < 0 ) {
100- GGML_ABORT (" failed to tokenize the prompt\n " );
101- }
102-
103- // prepare a batch for the prompt
104- llama_batch batch = llama_batch_get_one (prompt_tokens.data (), prompt_tokens.size ());
105- llama_token new_token_id;
106- while (true ) {
107- // check if we have enough space in the context to evaluate this batch
108- int n_ctx = llama_n_ctx (ctx);
109- int n_ctx_used = llama_get_kv_cache_used_cells (ctx);
110- if (n_ctx_used + batch.n_tokens > n_ctx) {
111- printf (" \033 [0m\n " );
112- fprintf (stderr, " context size exceeded\n " );
113- exit (0 );
114- }
115-
116- if (llama_decode (ctx, batch)) {
117- GGML_ABORT (" failed to decode\n " );
118- }
119-
120- // sample the next token
121- new_token_id = llama_sampler_sample (smpl, ctx, -1 );
122-
123- // is it an end of generation?
124- if (llama_token_is_eog (model, new_token_id)) {
125- break ;
126- }
127-
128- // convert the token to a string, print it and add it to the response
129- char buf[256 ];
130- int n = llama_token_to_piece (model, new_token_id, buf, sizeof (buf), 0 , true );
131- if (n < 0 ) {
132- GGML_ABORT (" failed to convert token to piece\n " );
133- }
134- std::string piece (buf, n);
135- printf (" %s" , piece.c_str ());
136- fflush (stdout);
137- response += piece;
138-
139- // prepare the next batch with the sampled token
140- batch = llama_batch_get_one (&new_token_id, 1 );
141- }
142-
143- return response;
144- };
145-
146200 std::vector<llama_chat_message> messages;
201+ std::vector<std::unique_ptr<char []>> owned_content;
147202 std::vector<char > formatted (llama_n_ctx (ctx));
148203 int prev_len = 0 ;
149204 while (true ) {
150205 // get user input
151206 printf (" \033 [32m> \033 [0m" );
152207 std::string user;
153208 std::getline (std::cin, user);
154-
155209 if (user.empty ()) {
156210 break ;
157211 }
158212
159- // add the user input to the message list and format it
160- messages.push_back ({" user" , strdup (user.c_str ())});
161- int new_len = llama_chat_apply_template (model, nullptr , messages.data (), messages.size (), true , formatted.data (), formatted.size ());
162- if (new_len > (int )formatted.size ()) {
163- formatted.resize (new_len);
164- new_len = llama_chat_apply_template (model, nullptr , messages.data (), messages.size (), true , formatted.data (), formatted.size ());
165- }
213+ // Add user input to messages
214+ add_message (" user" , user, messages, owned_content);
215+ int new_len = apply_chat_template (model, messages, formatted, true );
166216 if (new_len < 0 ) {
167217 fprintf (stderr, " failed to apply the chat template\n " );
168218 return 1 ;
169219 }
170220
171- // remove previous messages to obtain the prompt to generate the response
172- std::string prompt (formatted.begin () + prev_len, formatted.begin () + new_len);
221+ // remove previous messages to obtain the prompt to generate the
222+ // response
223+ std::string prompt (formatted.begin () + prev_len,
224+ formatted.begin () + new_len);
173225
174226 // generate a response
175227 printf (" \033 [33m" );
176- std::string response = generate (prompt);
228+ std::string response;
229+ if (generate (model, smpl, ctx, prompt, response)) {
230+ return 1 ;
231+ }
232+
177233 printf (" \n\033 [0m" );
178234
179- // add the response to the messages
180- messages.push_back ({" assistant" , strdup (response.c_str ())});
181- prev_len = llama_chat_apply_template (model, nullptr , messages.data (), messages.size (), false , nullptr , 0 );
235+ // Add response to messages
236+ prev_len = apply_chat_template (model, messages, formatted, false );
182237 if (prev_len < 0 ) {
183238 fprintf (stderr, " failed to apply the chat template\n " );
184239 return 1 ;
185240 }
186241 }
187242
188- // free resources
189- for (auto & msg : messages) {
190- free (const_cast <char *>(msg.content ));
191- }
192243 llama_sampler_free (smpl);
193244 llama_free (ctx);
194245 llama_free_model (model);
0 commit comments