Skip to content

Commit 8bea4f8

Browse files
committed
Remove duplicate definitions
1 parent 050abed commit 8bea4f8

File tree

1 file changed

+2
-167
lines changed

1 file changed

+2
-167
lines changed

include/llama.h

Lines changed: 2 additions & 167 deletions
Original file line numberDiff line numberDiff line change
@@ -47,29 +47,10 @@
4747
#define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
4848
#define LLAMA_STATE_SEQ_VERSION 2
4949

50-
#ifdef __cplusplus
51-
#include <vector>
52-
#include <string>
53-
#include <array> // Added for std::array
54-
55-
// These enums need to be defined before struct llama_hparams
56-
enum llama_swa_type {
57-
LLAMA_SWA_TYPE_UNSPECIFIED = -1,
58-
LLAMA_SWA_TYPE_NONE = 0,
59-
LLAMA_SWA_TYPE_STANDARD = 1, // standard SWA (used by Gemma-2)
60-
LLAMA_SWA_TYPE_CHUNKED = 2, // chunked SWA (used by Llama 4)
61-
};
62-
63-
enum llama_expert_gating_func_type {
64-
LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0,
65-
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1,
66-
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2,
67-
};
68-
#endif // __cplusplus // Closes the block for C++ specific includes and enums
69-
7050
#ifdef __cplusplus
7151
extern "C" {
7252
#endif
53+
7354
//
7455
// C interface
7556
//
@@ -1391,152 +1372,6 @@ extern "C" {
13911372

13921373
#ifdef __cplusplus
13931374
}
1394-
1395-
// Internal llama_hparams
1396-
// NOTE: must be C-compatible
1397-
// TODO: remove this C-compatibility requirement
1398-
#include <cstdint>
1399-
#include <cstddef>
1400-
// #include <vector> // already included above
1401-
// #include <string> // already included above
1402-
// #include <array> // already included above
1403-
1404-
// Max number of layers that can be stored in llama_hparams arrays
1405-
#define LLAMA_MAX_LAYERS 256
1406-
1407-
struct llama_hparams {
1408-
uint32_t n_vocab = 0;
1409-
uint32_t n_ctx_train = 0; // context size used during training
1410-
uint32_t n_embd = 0;
1411-
uint32_t n_layer = 0;
1412-
uint32_t n_rot = 0;
1413-
uint32_t n_ff_exp = 0; // feed-forward length for experts
1414-
uint32_t n_ff_shexp = 0; // feed-forward length for shared experts
1415-
uint32_t n_expert = 0;
1416-
uint32_t n_expert_used = 0;
1417-
uint32_t n_expert_shared = 0;
1418-
uint32_t n_embd_head_k = 0; // dimension of key heads
1419-
uint32_t n_embd_head_v = 0; // dimension of value heads
1420-
// uint32_t n_embd_k_gqa = 0; // dimension of key GQA // REMOVED
1421-
// uint32_t n_embd_v_gqa = 0; // dimension of value GQA // REMOVED
1422-
uint32_t n_embd_features = 0; // dimension of features for wavtokenizer
1423-
uint32_t n_layer_dense_lead = 0; // number of leading dense layers for MoE models
1424-
uint32_t n_moe_layer_step = 0; // step between MoE layers
1425-
uint32_t n_lora_q = 0;
1426-
uint32_t n_lora_kv = 0;
1427-
uint32_t n_lora_decay = 0;
1428-
uint32_t n_lora_iclr = 0;
1429-
uint32_t n_lora_value_res_mix = 0;
1430-
uint32_t n_lora_gate = 0;
1431-
uint32_t n_rel_attn_bkts = 0;
1432-
uint32_t n_no_rope_layer_step = 0;
1433-
uint32_t n_token_types = 0;
1434-
uint32_t n_swa = 0; // sliding window attention size
1435-
uint32_t n_swa_pattern = 0; // sliding window attention pattern
1436-
uint32_t wkv_head_size = 0;
1437-
uint32_t time_mix_extra_dim = 0;
1438-
uint32_t time_decay_extra_dim = 0;
1439-
uint32_t rescale_every_n_layers = 0;
1440-
uint32_t token_shift_count = 0;
1441-
uint32_t n_embd_head_k_mla = 0; // dimension of key heads for MLA
1442-
uint32_t n_embd_head_v_mla = 0; // dimension of value heads for MLA
1443-
uint32_t ssm_d_conv = 0; // SSM conv dimension
1444-
uint32_t ssm_d_inner = 0; // SSM inner dimension
1445-
uint32_t ssm_d_state = 0; // SSM state dimension
1446-
uint32_t ssm_dt_rank = 0; // SSM time step rank
1447-
uint32_t moe_every_n_layers = 0; // MoE layer interval
1448-
1449-
float f_norm_eps = 0.0f; // rmsnorm eps
1450-
float f_norm_rms_eps = 0.0f; // rmsnorm eps
1451-
float f_norm_group_eps = 0.0f; // group norm eps
1452-
uint32_t n_norm_groups = 0; // group norm groups
1453-
float f_clamp_kqv = 0.0f; // clamp kqv
1454-
float f_max_alibi_bias = 0.0f; // max alibi bias
1455-
float f_logit_scale = 0.0f; // logit scale
1456-
float f_attention_scale = 0.0f; // attention scale
1457-
float f_embedding_scale = 0.0f; // embedding scale
1458-
float f_residual_scale = 0.0f; // residual scale
1459-
float f_attn_logit_softcapping = 0.0f; // attention logit softcapping
1460-
float f_final_logit_softcapping = 0.0f; // final logit softcapping
1461-
float n_attn_temp_floor_scale = 0.0f; // attention temperature floor scale
1462-
float f_attn_temp_scale = 0.0f; // attention temperature scale
1463-
float expert_weights_scale = 0.0f; // expert weights scale
1464-
1465-
bool use_par_res = false; // parallel residual
1466-
bool causal_attn = true; // causal attention
1467-
bool rope_finetuned = false; // rope finetuned
1468-
bool swin_norm = false; // swin norm
1469-
bool attn_soft_cap = false; // attention soft capping
1470-
bool ssm_dt_b_c_rms = false; // ssm dt_b_c_rms
1471-
bool use_kq_norm = true; // use kq norm
1472-
bool expert_weights_norm = false; // expert weights norm
1473-
bool use_alibi = false; // use ALiBi
1474-
bool vocab_only = false; // only load vocabulary
1475-
1476-
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED;
1477-
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
1478-
llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE; // C++ enum, keyword 'enum' omitted
1479-
llama_expert_gating_func_type expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE; // C++ enum, keyword 'enum' omitted
1480-
1481-
float rope_freq_base_train = 0.0f;
1482-
float rope_freq_scale_train = 0.0f;
1483-
float rope_freq_base_train_swa = 0.0f;
1484-
float rope_freq_scale_train_swa = 0.0f;
1485-
float rope_attn_factor = 0.0f;
1486-
float rope_yarn_log_mul = 0.0f;
1487-
uint32_t n_ctx_orig_yarn = 0;
1488-
llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
1489-
1490-
llama_token dec_start_token_id = -1; // decoder start token id
1491-
1492-
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
1493-
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
1494-
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
1495-
std::array<uint32_t, LLAMA_MAX_LAYERS> rope_sections;
1496-
std::array<uint32_t, LLAMA_MAX_LAYERS> swa_layers;
1497-
std::vector<std::string> layers_block_type_arr;
1498-
1499-
1500-
// posnet / convnext hparams
1501-
struct {
1502-
uint32_t n_embd = 0;
1503-
uint32_t n_layer = 0;
1504-
} posnet;
1505-
1506-
struct {
1507-
uint32_t n_embd = 0;
1508-
uint32_t n_layer = 0;
1509-
} convnext;
1510-
1511-
// helper functions
1512-
uint32_t n_head (uint32_t il = 0) const { return n_head_arr [il % n_head_arr.size()]; }
1513-
uint32_t n_head_kv (uint32_t il = 0) const { return n_head_kv_arr[il % n_head_kv_arr.size()]; }
1514-
uint32_t n_ff (uint32_t il = 0) const { return n_ff_arr [il % n_ff_arr.size()]; }
1515-
uint32_t n_gqa (uint32_t il = 0) const { return n_head(il)/n_head_kv(il); }
1516-
uint32_t n_embd_k_gqa(uint32_t il = 0) const { return n_embd_head_k * n_head_kv(il); } // dimension of K (w/ GQA)
1517-
uint32_t n_embd_v_gqa(uint32_t il = 0) const { return n_embd_head_v * n_head_kv(il); } // dimension of V (w/ GQA)
1518-
uint32_t n_embd_k_s() const; // dimension of recurrent state for K
1519-
uint32_t n_embd_v_s() const; // dimension of recurrent state for V
1520-
1521-
bool is_swa(uint32_t il) const {
1522-
return swa_layers[il % swa_layers.size()] != 0;
1523-
}
1524-
1525-
bool is_swa_any() const {
1526-
for (uint32_t il = 0; il < n_layer; ++il) {
1527-
if (is_swa(il)) {
1528-
return true;
1529-
}
1530-
}
1531-
return false;
1532-
}
1533-
1534-
void set_swa_pattern(uint32_t pattern) {
1535-
for (uint32_t il = 0; il < n_layer; ++il) {
1536-
swa_layers[il] = (il + 1) % pattern == 0 ? 0 : 1;
1537-
}
1538-
}
1539-
};
1540-
#endif // __cplusplus
1375+
#endif
15411376

15421377
#endif // LLAMA_H

0 commit comments

Comments
 (0)