Skip to content

Commit 8f3806f

Browse files
committed
feat: Support GRANITE_MOE_HYBRID in llama-model
This re-uses the Bamba code paths heavily and simply adds the missing parts for loading MoE and the shared expert. Branch: GraniteFour Signed-off-by: Gabe Goodhart <[email protected]>
1 parent ab2da26 commit 8f3806f

File tree

1 file changed

+41
-9
lines changed

1 file changed

+41
-9
lines changed

src/llama-model.cpp

Lines changed: 41 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1434,6 +1434,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
14341434
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
14351435
} break;
14361436
case LLM_ARCH_BAMBA:
1437+
case LLM_ARCH_GRANITE_MOE_HYBRID:
14371438
{
14381439
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
14391440
ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, /* required */ false);
@@ -1475,6 +1476,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
14751476
// TODO: Add llm type label (not sure this is useful)
14761477
default: type = LLM_TYPE_UNKNOWN;
14771478
}
1479+
1480+
// For Granite MoE Shared
1481+
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
14781482
} break;
14791483
case LLM_ARCH_CHAMELEON:
14801484
{
@@ -3087,6 +3091,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
30873091
}
30883092
} break;
30893093
case LLM_ARCH_BAMBA:
3094+
case LLM_ARCH_GRANITE_MOE_HYBRID:
30903095
{
30913096
// mamba2 Mixer SSM params
30923097
// NOTE: int64_t for tensor dimensions
@@ -3153,14 +3158,31 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
31533158
}
31543159

31553160
// feed forward (w/ optional biases)
3156-
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
3157-
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
3158-
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
3159-
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
3160-
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
3161-
layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
3162-
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
3163-
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
3161+
if (n_expert > 0) {
3162+
// MoE FFN
3163+
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
3164+
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
3165+
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
3166+
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
3167+
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
3168+
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
3169+
3170+
// For Granite MoE Shared
3171+
if (hparams.n_ff_shexp > 0) {
3172+
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
3173+
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
3174+
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
3175+
}
3176+
} else {
3177+
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
3178+
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
3179+
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
3180+
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
3181+
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
3182+
layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
3183+
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
3184+
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
3185+
}
31643186
}
31653187
} break;
31663188
case LLM_ARCH_XVERSE:
@@ -4609,7 +4631,9 @@ void llama_model::print_info() const {
46094631

46104632
if (arch == LLM_ARCH_MINICPM ||
46114633
arch == LLM_ARCH_GRANITE ||
4612-
arch == LLM_ARCH_GRANITE_MOE) {
4634+
arch == LLM_ARCH_GRANITE_MOE ||
4635+
arch == LLM_ARCH_GRANITE_MOE_HYBRID ||
4636+
arch == LLM_ARCH_BAMBA) {
46134637
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
46144638
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
46154639
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
@@ -13544,6 +13568,7 @@ llama_memory_i * llama_model::create_memory(
1354413568
std::max((uint32_t) 1, cparams.n_seq_max));
1354513569
} break;
1354613570
case LLM_ARCH_BAMBA:
13571+
case LLM_ARCH_GRANITE_MOE_HYBRID:
1354713572
{
1354813573
// make vectors of recurrent and non-recurrent layer indices
1354913574
std::vector<size_t> recurrent_layers;
@@ -13861,6 +13886,12 @@ llm_graph_result_ptr llama_model::build_graph(
1386113886
{
1386213887
llm = std::make_unique<llm_build_granite>(*this, params, gf);
1386313888
} break;
13889+
case LLM_ARCH_GRANITE_MOE_HYBRID:
13890+
{
13891+
llm = std::make_unique<llm_build_hybrid_mamba>(*this, params, gf,
13892+
/* use_mamba2 */ true,
13893+
/* use_rope */ false);
13894+
} break;
1386413895
case LLM_ARCH_BAMBA:
1386513896
{
1386613897
llm = std::make_unique<llm_build_hybrid_mamba>(
@@ -14016,6 +14047,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
1401614047
case LLM_ARCH_GLM4:
1401714048
case LLM_ARCH_GRANITE:
1401814049
case LLM_ARCH_GRANITE_MOE:
14050+
case LLM_ARCH_GRANITE_MOE_HYBRID:
1401914051
case LLM_ARCH_BAMBA:
1402014052
case LLM_ARCH_CHAMELEON:
1402114053
case LLM_ARCH_BAILINGMOE:

0 commit comments

Comments
 (0)