@@ -855,7 +855,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
855855                        type = LLM_TYPE_149M; break; // modern-bert-base
856856                    case 28:
857857                        type = LLM_TYPE_395M; break; // modern-bert-large
858-                     default: type = LLM_TYPE_UNKNOWN;  
858+                     default: type = LLM_TYPE_UNKNOWN;
859859                }
860860            } break;
861861        case LLM_ARCH_JINA_BERT_V2:
@@ -2993,11 +2993,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
29932993                        layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i),   {n_embd}, 0);
29942994                    }
29952995                } break;
2996-             case LLM_ARCH_MODERN_BERT:  
2996+             case LLM_ARCH_MODERN_BERT:
29972997                {
29982998                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, 0);
29992999                    tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
3000-                                          
3000+ 
30013001                    output_norm   = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
30023002
30033003                    for(int i = 0; i < n_layer; ++i) {
@@ -3006,15 +3006,15 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
30063006                        if ( i != 0 ) {
30073007                            layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
30083008                        } else{
3009-                             // layer 0 uses identity  
3009+                             // layer 0 uses identity
30103010                            layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
30113011                        }
30123012
30133013
30143014                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, 3 * n_embd }, 0);
30153015                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT,   "weight", i), {n_embd, n_embd}, 0);
30163016
3017-                         layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, 2 * n_ff}, 0);  
3017+                         layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, 2 * n_ff}, 0);
30183018                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
30193019                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
30203020                    }
@@ -8209,7 +8209,7 @@ struct llm_build_modern_bert : public llm_graph_context {
82098209
82108210        ggml_tensor * cur = nullptr;
82118211        ggml_tensor * inpL = nullptr;
8212-         ggml_tensor * inp_pos = build_inp_pos();  
8212+         ggml_tensor * inp_pos = build_inp_pos();
82138213
82148214        // construct input embeddings (token, type, position)
82158215        inpL = build_inp_embd(model.tok_embd);
@@ -8221,7 +8221,7 @@ struct llm_build_modern_bert : public llm_graph_context {
82218221
82228222        ggml_tensor * inp_out_ids = build_inp_out_ids();
82238223
8224-         auto * inp_attn = build_attn_inp_no_cache();  
8224+         auto * inp_attn = build_attn_inp_no_cache();
82258225
82268226        for (int il = 0; il < n_layer; ++il) {
82278227            ggml_tensor * cur = inpL;
@@ -19831,7 +19831,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
1983119831        case LLM_ARCH_NOMIC_BERT_MOE:
1983219832        case LLM_ARCH_NEO_BERT:
1983319833        case LLM_ARCH_WAVTOKENIZER_DEC:
19834-         case LLM_ARCH_MODERN_BERT:  
19834+         case LLM_ARCH_MODERN_BERT:
1983519835        case LLM_ARCH_GEMMA_EMBEDDING:
1983619836        case LLM_ARCH_DREAM:
1983719837        case LLM_ARCH_LLADA:
0 commit comments