@@ -664,6 +664,9 @@ def get_vocab_base_pre(self, tokenizer) -> str:
664664 if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65" :
665665 # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
666666 res = "roberta-bpe"
667+ if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb" :
668+ # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
669+ res = "gigachat"
667670
668671 if res is None :
669672 logger .warning ("\n " )
@@ -3427,6 +3430,97 @@ def prepare_tensors(self):
34273430 raise ValueError (f"Unprocessed experts: { experts } " )
34283431
34293432
3433+ @Model .register ("DeepseekForCausalLM" )
3434+ class DeepseekModel (Model ):
3435+ model_arch = gguf .MODEL_ARCH .DEEPSEEK
3436+
3437+ def set_vocab (self ):
3438+ try :
3439+ self ._set_vocab_sentencepiece ()
3440+ except FileNotFoundError :
3441+ self ._set_vocab_gpt2 ()
3442+
3443+ def set_gguf_parameters (self ):
3444+ super ().set_gguf_parameters ()
3445+ hparams = self .hparams
3446+ if "head_dim" in hparams :
3447+ rope_dim = hparams ["head_dim" ]
3448+ else :
3449+ rope_dim = hparams ["hidden_size" ] // hparams ["num_attention_heads" ]
3450+
3451+ self .gguf_writer .add_rope_dimension_count (rope_dim )
3452+ self .gguf_writer .add_rope_scaling_type (gguf .RopeScalingType .NONE )
3453+ self .gguf_writer .add_leading_dense_block_count (hparams ["first_k_dense_replace" ])
3454+ self .gguf_writer .add_vocab_size (hparams ["vocab_size" ])
3455+ self .gguf_writer .add_expert_feed_forward_length (hparams ["moe_intermediate_size" ])
3456+ self .gguf_writer .add_expert_weights_scale (1.0 )
3457+ self .gguf_writer .add_expert_count (hparams ["n_routed_experts" ])
3458+ self .gguf_writer .add_expert_shared_count (hparams ["n_shared_experts" ])
3459+
3460+ _experts : list [dict [str , Tensor ]] | None = None
3461+
3462+ @staticmethod
3463+ def permute (weights : Tensor , n_head : int , n_head_kv : int | None ):
3464+ if n_head_kv is not None and n_head != n_head_kv :
3465+ n_head = n_head_kv
3466+ return (weights .reshape (n_head , 2 , weights .shape [0 ] // n_head // 2 , * weights .shape [1 :])
3467+ .swapaxes (1 , 2 )
3468+ .reshape (weights .shape ))
3469+
3470+ def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
3471+ n_head = self .hparams ["num_attention_heads" ]
3472+ n_kv_head = self .hparams .get ("num_key_value_heads" )
3473+
3474+ if name .endswith (("q_proj.weight" , "q_proj.bias" )):
3475+ data_torch = DeepseekModel .permute (data_torch , n_head , n_head )
3476+ if name .endswith (("k_proj.weight" , "k_proj.bias" )):
3477+ data_torch = DeepseekModel .permute (data_torch , n_head , n_kv_head )
3478+
3479+ # process the experts separately
3480+ if name .find ("mlp.experts" ) != - 1 :
3481+ n_experts = self .hparams ["n_routed_experts" ]
3482+ assert bid is not None
3483+
3484+ if self ._experts is None :
3485+ self ._experts = [{} for _ in range (self .block_count )]
3486+
3487+ self ._experts [bid ][name ] = data_torch
3488+
3489+ if len (self ._experts [bid ]) >= n_experts * 3 :
3490+ tensors : list [tuple [str , Tensor ]] = []
3491+
3492+ # merge the experts into a single 3d tensor
3493+ for w_name in ["down_proj" , "gate_proj" , "up_proj" ]:
3494+ datas : list [Tensor ] = []
3495+
3496+ for xid in range (n_experts ):
3497+ ename = f"model.layers.{ bid } .mlp.experts.{ xid } .{ w_name } .weight"
3498+ datas .append (self ._experts [bid ][ename ])
3499+ del self ._experts [bid ][ename ]
3500+
3501+ data_torch = torch .stack (datas , dim = 0 )
3502+
3503+ merged_name = f"model.layers.{ bid } .mlp.experts.{ w_name } .weight"
3504+
3505+ new_name = self .map_tensor_name (merged_name )
3506+
3507+ tensors .append ((new_name , data_torch ))
3508+ return tensors
3509+ else :
3510+ return []
3511+
3512+ return [(self .map_tensor_name (name ), data_torch )]
3513+
3514+ def prepare_tensors (self ):
3515+ super ().prepare_tensors ()
3516+
3517+ if self ._experts is not None :
3518+ # flatten `list[dict[str, Tensor]]` into `list[str]`
3519+ experts = [k for d in self ._experts for k in d .keys ()]
3520+ if len (experts ) > 0 :
3521+ raise ValueError (f"Unprocessed experts: { experts } " )
3522+
3523+
34303524@Model .register ("DeepseekV2ForCausalLM" )
34313525class DeepseekV2Model (Model ):
34323526 model_arch = gguf .MODEL_ARCH .DEEPSEEK2
0 commit comments