Skip to content

Commit c9ccbec

Browse files
committed
cgraph ok
1 parent a986efb commit c9ccbec

File tree

2 files changed

+143
-1
lines changed

2 files changed

+143
-1
lines changed

convert_hf_to_gguf.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -6538,6 +6538,7 @@ def set_gguf_parameters(self):
65386538
super().set_gguf_parameters()
65396539
self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
65406540

6541+
65416542
@ModelBase.register("HunYuanMoEV1ForCausalLM")
65426543
class HunYuanMoEModel(TextModel):
65436544
model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE

src/llama-model.cpp

Lines changed: 142 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1564,6 +1564,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
15641564
case LLM_ARCH_SMOLLM3:
15651565
{
15661566
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
1567+
hparams.n_no_rope_layer_step = 4;
15671568

15681569
switch (hparams.n_layer) {
15691570
case 36: type = LLM_TYPE_3B; break;
@@ -14893,6 +14894,143 @@ struct llm_build_hunyuan_moe : public llm_graph_context {
1489314894
}
1489414895
};
1489514896

14897+
struct llm_build_smollm3 : public llm_graph_context {
14898+
llm_build_smollm3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
14899+
const int64_t n_embd_head = hparams.n_embd_head_v;
14900+
14901+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
14902+
GGML_ASSERT(n_embd_head == hparams.n_rot);
14903+
14904+
ggml_tensor * cur;
14905+
ggml_tensor * inpL;
14906+
14907+
inpL = build_inp_embd(model.tok_embd);
14908+
14909+
// inp_pos - contains the positions
14910+
ggml_tensor * inp_pos = build_inp_pos();
14911+
14912+
auto * inp_attn = build_attn_inp_kv_unified();
14913+
14914+
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
14915+
14916+
ggml_tensor * inp_out_ids = build_inp_out_ids();
14917+
14918+
for (int il = 0; il < n_layer; ++il) {
14919+
ggml_tensor * inpSA = inpL;
14920+
14921+
const bool use_rope = (il + 1) % hparams.n_no_rope_layer_step != 0;
14922+
14923+
// norm
14924+
cur = build_norm(inpL,
14925+
model.layers[il].attn_norm, NULL,
14926+
LLM_NORM_RMS, il);
14927+
cb(cur, "attn_norm", il);
14928+
14929+
// self-attention
14930+
{
14931+
// compute Q and K and RoPE them
14932+
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
14933+
cb(Qcur, "Qcur", il);
14934+
if (model.layers[il].bq) {
14935+
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
14936+
cb(Qcur, "Qcur", il);
14937+
}
14938+
14939+
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
14940+
cb(Kcur, "Kcur", il);
14941+
if (model.layers[il].bk) {
14942+
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
14943+
cb(Kcur, "Kcur", il);
14944+
}
14945+
14946+
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
14947+
cb(Vcur, "Vcur", il);
14948+
if (model.layers[il].bv) {
14949+
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
14950+
cb(Vcur, "Vcur", il);
14951+
}
14952+
14953+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
14954+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
14955+
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
14956+
14957+
if (use_rope) {
14958+
Qcur = ggml_rope_ext(
14959+
ctx0, Qcur, inp_pos, nullptr,
14960+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
14961+
ext_factor, attn_factor, beta_fast, beta_slow
14962+
);
14963+
14964+
Kcur = ggml_rope_ext(
14965+
ctx0, Kcur, inp_pos, nullptr,
14966+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
14967+
ext_factor, attn_factor, beta_fast, beta_slow
14968+
);
14969+
}
14970+
14971+
cb(Qcur, "Qcur", il);
14972+
cb(Kcur, "Kcur", il);
14973+
cb(Vcur, "Vcur", il);
14974+
14975+
cur = build_attn(inp_attn, gf,
14976+
model.layers[il].wo, model.layers[il].bo,
14977+
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
14978+
cb(cur, "attn_out", il);
14979+
}
14980+
14981+
if (il == n_layer - 1 && inp_out_ids) {
14982+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
14983+
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
14984+
}
14985+
14986+
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
14987+
cb(ffn_inp, "ffn_inp", il);
14988+
14989+
// feed-forward network
14990+
{
14991+
cur = build_norm(ffn_inp,
14992+
model.layers[il].ffn_norm, NULL,
14993+
LLM_NORM_RMS, il);
14994+
cb(cur, "ffn_norm", il);
14995+
14996+
cur = build_ffn(cur,
14997+
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
14998+
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
14999+
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
15000+
NULL,
15001+
LLM_FFN_SILU, LLM_FFN_PAR, il);
15002+
cb(cur, "ffn_out", il);
15003+
}
15004+
15005+
cur = ggml_add(ctx0, cur, ffn_inp);
15006+
cb(cur, "ffn_out", il);
15007+
15008+
cur = build_cvec(cur, il);
15009+
cb(cur, "l_out", il);
15010+
15011+
// input for next layer
15012+
inpL = cur;
15013+
}
15014+
15015+
cur = inpL;
15016+
15017+
cur = build_norm(cur,
15018+
model.output_norm, NULL,
15019+
LLM_NORM_RMS, -1);
15020+
15021+
cb(cur, "result_norm", -1);
15022+
res->t_embd = cur;
15023+
15024+
// lm_head
15025+
cur = build_lora_mm(model.output, cur);
15026+
15027+
cb(cur, "result_output", -1);
15028+
res->t_logits = cur;
15029+
15030+
ggml_build_forward_expand(gf, cur);
15031+
}
15032+
};
15033+
1489615034
llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
1489715035
llama_memory_i * res;
1489815036

@@ -14996,7 +15134,6 @@ llm_graph_result_ptr llama_model::build_graph(
1499615134
llm = std::make_unique<llm_build_llama>(*this, params, gf);
1499715135
} break;
1499815136
case LLM_ARCH_LLAMA4:
14999-
case LLM_ARCH_SMOLLM3:
1500015137
{
1500115138
llm = std::make_unique<llm_build_llama_iswa>(*this, params, gf);
1500215139
} break;
@@ -15278,6 +15415,10 @@ llm_graph_result_ptr llama_model::build_graph(
1527815415
{
1527915416
llm = std::make_unique<llm_build_hunyuan_moe>(*this, params, gf);
1528015417
} break;
15418+
case LLM_ARCH_SMOLLM3:
15419+
{
15420+
llm = std::make_unique<llm_build_smollm3>(*this, params, gf);
15421+
} break;
1528115422
default:
1528215423
GGML_ABORT("fatal error");
1528315424
}

0 commit comments

Comments
 (0)