Skip to content

Commit d058cd0

Browse files
committed
Merge branch 'master' into huydt/truncate-embed
2 parents 16affc5 + de56944 commit d058cd0

File tree

16 files changed

+561
-48
lines changed

16 files changed

+561
-48
lines changed

.github/workflows/build.yml

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -84,7 +84,8 @@ jobs:
8484
-DCMAKE_BUILD_RPATH="@loader_path" \
8585
-DLLAMA_FATAL_WARNINGS=ON \
8686
-DGGML_METAL_USE_BF16=ON \
87-
-DGGML_METAL_EMBED_LIBRARY=ON \
87+
-DGGML_METAL_EMBED_LIBRARY=OFF \
88+
-DGGML_METAL_SHADER_DEBUG=ON \
8889
-DGGML_RPC=ON
8990
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
9091

docs/docker.md

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -25,6 +25,9 @@ Additionally, there the following images, similar to the above:
2525
- `ghcr.io/ggml-org/llama.cpp:full-intel`: Same as `full` but compiled with SYCL support. (platforms: `linux/amd64`)
2626
- `ghcr.io/ggml-org/llama.cpp:light-intel`: Same as `light` but compiled with SYCL support. (platforms: `linux/amd64`)
2727
- `ghcr.io/ggml-org/llama.cpp:server-intel`: Same as `server` but compiled with SYCL support. (platforms: `linux/amd64`)
28+
- `ghcr.io/ggml-org/llama.cpp:full-vulkan`: Same as `full` but compiled with Vulkan support. (platforms: `linux/amd64`)
29+
- `ghcr.io/ggml-org/llama.cpp:light-vulkan`: Same as `light` but compiled with Vulkan support. (platforms: `linux/amd64`)
30+
- `ghcr.io/ggml-org/llama.cpp:server-vulkan`: Same as `server` but compiled with Vulkan support. (platforms: `linux/amd64`)
2831

2932
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA, ROCm or MUSA library, you'll need to build the images locally for now).
3033

ggml/include/ggml.h

Lines changed: 20 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1867,6 +1867,12 @@ extern "C" {
18671867
enum ggml_scale_mode {
18681868
GGML_SCALE_MODE_NEAREST = 0,
18691869
GGML_SCALE_MODE_BILINEAR = 1,
1870+
1871+
GGML_SCALE_MODE_COUNT
1872+
};
1873+
1874+
enum ggml_scale_flag {
1875+
GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8)
18701876
};
18711877

18721878
// interpolate
@@ -1879,14 +1885,26 @@ extern "C" {
18791885

18801886
// interpolate
18811887
// interpolate scale to specified dimensions
1882-
GGML_API struct ggml_tensor * ggml_upscale_ext(
1888+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_upscale_ext(
18831889
struct ggml_context * ctx,
18841890
struct ggml_tensor * a,
18851891
int ne0,
18861892
int ne1,
18871893
int ne2,
18881894
int ne3,
1889-
enum ggml_scale_mode mode);
1895+
enum ggml_scale_mode mode),
1896+
"use ggml_interpolate instead");
1897+
1898+
// Up- or downsamples the input to the specified size.
1899+
// 2D scale modes (eg. bilinear) are applied to the first two dimensions.
1900+
GGML_API struct ggml_tensor * ggml_interpolate(
1901+
struct ggml_context * ctx,
1902+
struct ggml_tensor * a,
1903+
int64_t ne0,
1904+
int64_t ne1,
1905+
int64_t ne2,
1906+
int64_t ne3,
1907+
uint32_t mode); // ggml_scale_mode [ | ggml_scale_flag...]
18901908

18911909
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
18921910
GGML_API struct ggml_tensor * ggml_pad(

ggml/src/ggml-cann/aclnn_ops.cpp

Lines changed: 65 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@
6565
#include <aclnnop/aclnn_eq_tensor.h>
6666
#include <aclnnop/aclnn_gt_scalar.h>
6767
#include <aclnnop/aclnn_pow.h>
68-
#include <aclnnop/aclnn_grouped_matmul_v2.h>
68+
#include <aclnnop/aclnn_grouped_matmul_v3.h>
6969
#include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
7070
#include <float.h>
7171

@@ -2654,6 +2654,67 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor*
26542654
memcpy(ori_src0_nb, cast_nb, sizeof(ori_src0_nb));
26552655
}
26562656

2657+
#ifdef ASCEND_310P
2658+
ggml_tensor src0_row = *src0;
2659+
ggml_tensor src1_row = *src1;
2660+
ggml_tensor dst_row = *dst;
2661+
2662+
if (src0->type == GGML_TYPE_F16) {
2663+
src0_row.type = GGML_TYPE_F32;
2664+
}
2665+
2666+
// src0_row [D, M, 1, 1] weight without permute
2667+
src0_row.ne[2] = 1;
2668+
src0_row.ne[3] = 1;
2669+
src0_row.nb[0] = ori_src0_nb[0];
2670+
src0_row.nb[1] = ori_src0_nb[1];
2671+
src0_row.nb[2] = ori_src0_nb[1];
2672+
src0_row.nb[3] = ori_src0_nb[1];
2673+
2674+
// src1_row [D, 1, 1, 1] -> input
2675+
src1_row.ne[1] = 1;
2676+
src1_row.ne[2] = 1;
2677+
src1_row.ne[3] = 1;
2678+
src1_row.nb[2] = nb11;
2679+
src1_row.nb[3] = nb11;
2680+
2681+
// dst_row [M, 1, 1, 1] -> out
2682+
dst_row.ne[1] = 1;
2683+
dst_row.ne[2] = 1;
2684+
dst_row.ne[3] = 1;
2685+
dst_row.nb[2] = nb1;
2686+
dst_row.nb[3] = nb1;
2687+
2688+
//create weight for one row
2689+
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
2690+
for (int64_t id = 0; id < n_ids; id++) {
2691+
// expert index
2692+
int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
2693+
GGML_ASSERT(i02 >= 0 && i02 < n_as);
2694+
2695+
// If B = 1 (broadcast), always use 0; otherwise, use id.
2696+
int64_t i11 = (ne11 == 1 ? 0 : id);
2697+
int64_t i12 = iid1;
2698+
2699+
int64_t i1 = id;
2700+
int64_t i2 = i12;
2701+
2702+
void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2];
2703+
void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
2704+
void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;
2705+
2706+
src0_row.data = src0_tmp_ptr;
2707+
src1_row.data = src1_tmp_ptr;
2708+
dst_row.data = dst_tmp_ptr;
2709+
dst_row.src[0] = &src0_row;
2710+
dst_row.src[1] = &src1_row;
2711+
2712+
ggml_cann_mul_mat(ctx, &dst_row);
2713+
}
2714+
}
2715+
return;
2716+
#endif
2717+
26572718
std::vector<aclTensor*> src0_tensor_vec;
26582719
std::vector<aclTensor*> src1_tensor_vec;
26592720
std::vector<aclTensor*> dst_tensor_vec;
@@ -2701,9 +2762,9 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor*
27012762
}
27022763

27032764
size_t GROUP_SIZE = 128;
2704-
// GroupedMatmulV2 required tensor_list.size < 128
2765+
// GroupedMatmulV3 required tensor_list.size < 128
27052766
for (size_t i = 0; i < src0_tensor_vec.size(); i += GROUP_SIZE) {
2706-
// split and call GroupedMatmulV2
2767+
// split and call GroupedMatmulV3
27072768
size_t end = std::min(i + GROUP_SIZE, src0_tensor_vec.size());
27082769
std::vector<aclTensor*> src0_tensor_vec_split(src0_tensor_vec.begin() + i, src0_tensor_vec.begin() + end);
27092770
std::vector<aclTensor*> src1_tensor_vec_split(src1_tensor_vec.begin() + i, src1_tensor_vec.begin() + end);
@@ -2713,7 +2774,7 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor*
27132774
aclTensorList* src1_tensor_list = aclCreateTensorList(src1_tensor_vec_split.data(), src1_tensor_vec_split.size());
27142775
aclTensorList* dst_tensor_list = aclCreateTensorList(dst_tensor_vec_split.data(), dst_tensor_vec_split.size());
27152776

2716-
GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV2, src1_tensor_list, src0_tensor_list,
2777+
GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV3, src1_tensor_list, src0_tensor_list,
27172778
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, -1, dst_tensor_list);
27182779

27192780
ggml_cann_release_resources(ctx, src0_tensor_list, src1_tensor_list, dst_tensor_list);

ggml/src/ggml-cpu/ops.cpp

Lines changed: 12 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -7276,12 +7276,13 @@ static void ggml_compute_forward_upscale_f32(
72767276

72777277
GGML_TENSOR_UNARY_OP_LOCALS
72787278

7279-
const float sf0 = (float)ne0/src0->ne[0];
7280-
const float sf1 = (float)ne1/src0->ne[1];
7281-
const float sf2 = (float)ne2/src0->ne[2];
7282-
const float sf3 = (float)ne3/src0->ne[3];
7279+
float sf0 = (float)ne0/src0->ne[0];
7280+
float sf1 = (float)ne1/src0->ne[1];
7281+
float sf2 = (float)ne2/src0->ne[2];
7282+
float sf3 = (float)ne3/src0->ne[3];
72837283

7284-
const ggml_scale_mode mode = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
7284+
const int32_t mode_flags = ggml_get_op_params_i32(dst, 0);
7285+
const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
72857286

72867287
if (mode == GGML_SCALE_MODE_NEAREST) {
72877288
for (int64_t i3 = 0; i3 < ne3; i3++) {
@@ -7302,8 +7303,12 @@ static void ggml_compute_forward_upscale_f32(
73027303
}
73037304
}
73047305
} else if (mode == GGML_SCALE_MODE_BILINEAR) {
7305-
// setting a pixel offset of 0 would replicate the behavior of pytorch interpolate with align_corners=True
7306-
const float pixel_offset = 0.5f;
7306+
float pixel_offset = 0.5f;
7307+
if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
7308+
pixel_offset = 0.0f;
7309+
sf0 = (float)(ne0 - 1) / (src0->ne[0] - 1);
7310+
sf1 = (float)(ne1 - 1) / (src0->ne[1] - 1);
7311+
}
73077312

73087313
for (int64_t i3 = 0; i3 < ne3; i3++) {
73097314
const int64_t i03 = i3 / sf3;

ggml/src/ggml-metal/CMakeLists.txt

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,9 @@ else()
7171
# note: adding -fno-inline fixes the tests when using MTL_SHADER_VALIDATION=1
7272
# note: unfortunately, we have to call it default.metallib instead of ggml.metallib
7373
# ref: https://github.com/ggerganov/whisper.cpp/issues/1720
74-
set(XC_FLAGS -fno-fast-math -fno-inline -g)
74+
# note: adding -g causes segmentation fault during compile
75+
#set(XC_FLAGS -fno-fast-math -fno-inline -g)
76+
set(XC_FLAGS -fno-fast-math -fno-inline)
7577
else()
7678
set(XC_FLAGS -O3)
7779
endif()
@@ -90,7 +92,7 @@ else()
9092
add_custom_command(
9193
OUTPUT ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
9294
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o - |
93-
xcrun -sdk macosx metallib - -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
95+
xcrun -sdk macosx metallib - -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
9496
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h
9597
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal
9698
DEPENDS ggml-metal.metal ${METALLIB_COMMON}

ggml/src/ggml-opencl/CMakeLists.txt

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -65,6 +65,7 @@ set(GGML_OPENCL_KERNELS
6565
gemv_noshuffle_general
6666
gemv_noshuffle
6767
get_rows
68+
glu
6869
group_norm
6970
im2col_f32
7071
im2col_f16

ggml/src/ggml-opencl/ggml-opencl.cpp

Lines changed: 124 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -351,6 +351,7 @@ struct ggml_backend_opencl_context {
351351
cl_program program_gemv_noshuffle_general;
352352
cl_program program_gemv_noshuffle;
353353
cl_program program_get_rows;
354+
cl_program program_glu;
354355
cl_program program_im2col_f16;
355356
cl_program program_im2col_f32;
356357
cl_program program_mul_mat_Ab_Bi_8x4;
@@ -401,6 +402,8 @@ struct ggml_backend_opencl_context {
401402
cl_kernel kernel_relu;
402403
cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
403404
cl_kernel kernel_clamp;
405+
cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu,
406+
kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16;
404407
cl_kernel kernel_norm;
405408
cl_kernel kernel_rms_norm;
406409
cl_kernel kernel_group_norm;
@@ -738,6 +741,27 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
738741
GGML_LOG_CONT(".");
739742
}
740743

744+
// glu
745+
{
746+
#ifdef GGML_OPENCL_EMBED_KERNELS
747+
const std::string kernel_src {
748+
#include "glu.cl.h"
749+
};
750+
#else
751+
const std::string kernel_src = read_file("glu.cl");
752+
#endif
753+
backend_ctx->program_glu =
754+
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
755+
756+
CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
757+
CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
758+
CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
759+
CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
760+
CL_CHECK((backend_ctx->kernel_reglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_reglu_f16", &err), err));
761+
CL_CHECK((backend_ctx->kernel_swiglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_f16", &err), err));
762+
GGML_LOG_CONT(".");
763+
}
764+
741765
// get_rows
742766
{
743767
#ifdef GGML_OPENCL_EMBED_KERNELS
@@ -2242,6 +2266,15 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
22422266
default:
22432267
return false;
22442268
}
2269+
case GGML_OP_GLU:
2270+
switch (ggml_get_glu_op(op)) {
2271+
case GGML_GLU_OP_GEGLU:
2272+
case GGML_GLU_OP_REGLU:
2273+
case GGML_GLU_OP_SWIGLU:
2274+
return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
2275+
default:
2276+
return false;
2277+
}
22452278
case GGML_OP_CLAMP:
22462279
return op->src[0]->type == GGML_TYPE_F32;
22472280
case GGML_OP_SOFT_MAX:
@@ -6143,6 +6176,91 @@ static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, c
61436176
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
61446177
}
61456178

6179+
static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
6180+
GGML_ASSERT(src0);
6181+
GGML_ASSERT(src0->extra);
6182+
GGML_ASSERT(dst);
6183+
GGML_ASSERT(dst->extra);
6184+
6185+
GGML_ASSERT(ggml_is_contiguous_1(src0));
6186+
6187+
if (src1) {
6188+
GGML_ASSERT(src1);
6189+
GGML_ASSERT(src1->extra);
6190+
GGML_ASSERT(ggml_are_same_shape(src0, src1));
6191+
}
6192+
6193+
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
6194+
6195+
cl_kernel kernel;
6196+
switch (ggml_get_glu_op(dst)) {
6197+
case GGML_GLU_OP_GEGLU:
6198+
if (dst->type == GGML_TYPE_F32) {
6199+
kernel = backend_ctx->kernel_geglu;
6200+
} else {
6201+
kernel = backend_ctx->kernel_geglu_f16;
6202+
}
6203+
break;
6204+
case GGML_GLU_OP_REGLU:
6205+
if (dst->type == GGML_TYPE_F32) {
6206+
kernel = backend_ctx->kernel_reglu;
6207+
} else {
6208+
kernel = backend_ctx->kernel_reglu_f16;
6209+
}
6210+
break;
6211+
case GGML_GLU_OP_SWIGLU:
6212+
if (dst->type == GGML_TYPE_F32) {
6213+
kernel = backend_ctx->kernel_swiglu;
6214+
} else {
6215+
kernel = backend_ctx->kernel_swiglu_f16;
6216+
}
6217+
break;
6218+
default:
6219+
GGML_ABORT("Unsupported glu op");
6220+
}
6221+
6222+
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
6223+
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
6224+
6225+
ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
6226+
6227+
cl_ulong offset0 = extra0->offset + src0->view_offs;
6228+
cl_ulong offsetd = extrad->offset + dst->view_offs;
6229+
6230+
cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
6231+
6232+
const int ne0 = dst->ne[0];
6233+
6234+
const cl_ulong nb01 = src0->nb[1];
6235+
const cl_ulong nb11 = src1 ? src1->nb[1] : nb01;
6236+
6237+
const cl_ulong nb1 = dst->nb[1];
6238+
6239+
const int swp = ((const int32_t *) dst->op_params)[1];
6240+
const int ne00_off = src1 ? 0 : (swp ? ne0 : 0);
6241+
const int ne10_off = src1 ? 0 : (swp ? 0 : ne0);
6242+
6243+
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
6244+
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
6245+
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), src1 ? &extra1->data_device : &extra0->data_device));
6246+
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
6247+
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
6248+
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
6249+
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
6250+
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb11));
6251+
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
6252+
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb1));
6253+
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne00_off));
6254+
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10_off));
6255+
6256+
const size_t nrows = ggml_nrows(src0);
6257+
size_t nth = 512;
6258+
size_t global_work_size[] = {nrows*nth, 1, 1};
6259+
size_t local_work_size[] = {nth, 1, 1};
6260+
6261+
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
6262+
}
6263+
61466264
//------------------------------------------------------------------------------
61476265
// Op offloading
61486266
//------------------------------------------------------------------------------
@@ -6244,6 +6362,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
62446362
default:
62456363
return false;
62466364
} break;
6365+
case GGML_OP_GLU:
6366+
if (!any_on_device) {
6367+
return false;
6368+
}
6369+
func = ggml_cl_glu;
6370+
break;
62476371
case GGML_OP_CLAMP:
62486372
if (!any_on_device) {
62496373
return false;

0 commit comments

Comments
 (0)