|  | 
|  | 1 | +#include "llama.h" | 
|  | 2 | +#include <cstdio> | 
|  | 3 | +#include <cstring> | 
|  | 4 | +#include <iostream> | 
|  | 5 | +#include <string> | 
|  | 6 | +#include <vector> | 
|  | 7 | + | 
|  | 8 | +static void print_usage(int, char ** argv) { | 
|  | 9 | +    printf("\nexample usage:\n"); | 
|  | 10 | +    printf("\n    %s -m model.gguf [-c context_size] [-ngl n_gpu_layers]\n", argv[0]); | 
|  | 11 | +    printf("\n"); | 
|  | 12 | +} | 
|  | 13 | + | 
|  | 14 | +int main(int argc, char ** argv) { | 
|  | 15 | +    std::string model_path; | 
|  | 16 | +    int ngl = 99; | 
|  | 17 | +    int n_ctx = 2048; | 
|  | 18 | + | 
|  | 19 | +    // parse command line arguments | 
|  | 20 | +    for (int i = 1; i < argc; i++) { | 
|  | 21 | +        try { | 
|  | 22 | +            if (strcmp(argv[i], "-m") == 0) { | 
|  | 23 | +                if (i + 1 < argc) { | 
|  | 24 | +                    model_path = argv[++i]; | 
|  | 25 | +                } else { | 
|  | 26 | +                    print_usage(argc, argv); | 
|  | 27 | +                    return 1; | 
|  | 28 | +                } | 
|  | 29 | +            } else if (strcmp(argv[i], "-c") == 0) { | 
|  | 30 | +                if (i + 1 < argc) { | 
|  | 31 | +                    n_ctx = std::stoi(argv[++i]); | 
|  | 32 | +                } else { | 
|  | 33 | +                    print_usage(argc, argv); | 
|  | 34 | +                    return 1; | 
|  | 35 | +                } | 
|  | 36 | +            } else if (strcmp(argv[i], "-ngl") == 0) { | 
|  | 37 | +                if (i + 1 < argc) { | 
|  | 38 | +                    ngl = std::stoi(argv[++i]); | 
|  | 39 | +                } else { | 
|  | 40 | +                    print_usage(argc, argv); | 
|  | 41 | +                    return 1; | 
|  | 42 | +                } | 
|  | 43 | +            } else { | 
|  | 44 | +                print_usage(argc, argv); | 
|  | 45 | +                return 1; | 
|  | 46 | +            } | 
|  | 47 | +        } catch (std::exception & e) { | 
|  | 48 | +            fprintf(stderr, "error: %s\n", e.what()); | 
|  | 49 | +            print_usage(argc, argv); | 
|  | 50 | +            return 1; | 
|  | 51 | +        } | 
|  | 52 | +    } | 
|  | 53 | +    if (model_path.empty()) { | 
|  | 54 | +        print_usage(argc, argv); | 
|  | 55 | +        return 1; | 
|  | 56 | +    } | 
|  | 57 | + | 
|  | 58 | +    // only print errors | 
|  | 59 | +    llama_log_set([](enum ggml_log_level level, const char * text, void * /* user_data */) { | 
|  | 60 | +        if (level >= GGML_LOG_LEVEL_ERROR) { | 
|  | 61 | +            fprintf(stderr, "%s", text); | 
|  | 62 | +        } | 
|  | 63 | +    }, nullptr); | 
|  | 64 | + | 
|  | 65 | +    // initialize the model | 
|  | 66 | +    llama_model_params model_params = llama_model_default_params(); | 
|  | 67 | +    model_params.n_gpu_layers = ngl; | 
|  | 68 | + | 
|  | 69 | +    llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params); | 
|  | 70 | +    if (!model) { | 
|  | 71 | +        fprintf(stderr , "%s: error: unable to load model\n" , __func__); | 
|  | 72 | +        return 1; | 
|  | 73 | +    } | 
|  | 74 | + | 
|  | 75 | +    // initialize the context | 
|  | 76 | +    llama_context_params ctx_params = llama_context_default_params(); | 
|  | 77 | +    ctx_params.n_ctx = n_ctx; | 
|  | 78 | +    ctx_params.n_batch = n_ctx; | 
|  | 79 | + | 
|  | 80 | +    llama_context * ctx = llama_new_context_with_model(model, ctx_params); | 
|  | 81 | +    if (!ctx) { | 
|  | 82 | +        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); | 
|  | 83 | +        return 1; | 
|  | 84 | +    } | 
|  | 85 | + | 
|  | 86 | +    // initialize the sampler | 
|  | 87 | +    llama_sampler * smpl = llama_sampler_chain_init(llama_sampler_chain_default_params()); | 
|  | 88 | +    llama_sampler_chain_add(smpl, llama_sampler_init_min_p(0.05f, 1)); | 
|  | 89 | +    llama_sampler_chain_add(smpl, llama_sampler_init_temp(0.8f)); | 
|  | 90 | +    llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED)); | 
|  | 91 | + | 
|  | 92 | +    // helper function to evaluate a prompt and generate a response | 
|  | 93 | +    auto generate = [&](const std::string & prompt) { | 
|  | 94 | +        std::string response; | 
|  | 95 | + | 
|  | 96 | +        // tokenize the prompt | 
|  | 97 | +        const int n_prompt_tokens = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true); | 
|  | 98 | +        std::vector<llama_token> prompt_tokens(n_prompt_tokens); | 
|  | 99 | +        if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) { | 
|  | 100 | +            GGML_ABORT("failed to tokenize the prompt\n"); | 
|  | 101 | +        } | 
|  | 102 | + | 
|  | 103 | +        // prepare a batch for the prompt | 
|  | 104 | +        llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size()); | 
|  | 105 | +        llama_token new_token_id; | 
|  | 106 | +        while (true) { | 
|  | 107 | +            // check if we have enough space in the context to evaluate this batch | 
|  | 108 | +            int n_ctx = llama_n_ctx(ctx); | 
|  | 109 | +            int n_ctx_used = llama_get_kv_cache_used_cells(ctx); | 
|  | 110 | +            if (n_ctx_used + batch.n_tokens > n_ctx) { | 
|  | 111 | +                printf("\033[0m\n"); | 
|  | 112 | +                fprintf(stderr, "context size exceeded\n"); | 
|  | 113 | +                exit(0); | 
|  | 114 | +            } | 
|  | 115 | + | 
|  | 116 | +            if (llama_decode(ctx, batch)) { | 
|  | 117 | +                GGML_ABORT("failed to decode\n"); | 
|  | 118 | +            } | 
|  | 119 | + | 
|  | 120 | +            // sample the next token | 
|  | 121 | +            new_token_id = llama_sampler_sample(smpl, ctx, -1); | 
|  | 122 | + | 
|  | 123 | +            // is it an end of generation? | 
|  | 124 | +            if (llama_token_is_eog(model, new_token_id)) { | 
|  | 125 | +                break; | 
|  | 126 | +            } | 
|  | 127 | + | 
|  | 128 | +            // convert the token to a string, print it and add it to the response | 
|  | 129 | +            char buf[256]; | 
|  | 130 | +            int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true); | 
|  | 131 | +            if (n < 0) { | 
|  | 132 | +                GGML_ABORT("failed to convert token to piece\n"); | 
|  | 133 | +            } | 
|  | 134 | +            std::string piece(buf, n); | 
|  | 135 | +            printf("%s", piece.c_str()); | 
|  | 136 | +            fflush(stdout); | 
|  | 137 | +            response += piece; | 
|  | 138 | + | 
|  | 139 | +            // prepare the next batch with the sampled token | 
|  | 140 | +            batch = llama_batch_get_one(&new_token_id, 1); | 
|  | 141 | +        } | 
|  | 142 | + | 
|  | 143 | +        return response; | 
|  | 144 | +    }; | 
|  | 145 | + | 
|  | 146 | +    std::vector<llama_chat_message> messages; | 
|  | 147 | +    std::vector<char> formatted(llama_n_ctx(ctx)); | 
|  | 148 | +    int prev_len = 0; | 
|  | 149 | +    while (true) { | 
|  | 150 | +        // get user input | 
|  | 151 | +        printf("\033[32m> \033[0m"); | 
|  | 152 | +        std::string user; | 
|  | 153 | +        std::getline(std::cin, user); | 
|  | 154 | + | 
|  | 155 | +        if (user.empty()) { | 
|  | 156 | +            break; | 
|  | 157 | +        } | 
|  | 158 | + | 
|  | 159 | +        // add the user input to the message list and format it | 
|  | 160 | +        messages.push_back({"user", strdup(user.c_str())}); | 
|  | 161 | +        int new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size()); | 
|  | 162 | +        if (new_len > (int)formatted.size()) { | 
|  | 163 | +            formatted.resize(new_len); | 
|  | 164 | +            new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size()); | 
|  | 165 | +        } | 
|  | 166 | +        if (new_len < 0) { | 
|  | 167 | +            fprintf(stderr, "failed to apply the chat template\n"); | 
|  | 168 | +            return 1; | 
|  | 169 | +        } | 
|  | 170 | + | 
|  | 171 | +        // remove previous messages to obtain the prompt to generate the response | 
|  | 172 | +        std::string prompt(formatted.begin() + prev_len, formatted.begin() + new_len); | 
|  | 173 | + | 
|  | 174 | +        // generate a response | 
|  | 175 | +        printf("\033[33m"); | 
|  | 176 | +        std::string response = generate(prompt); | 
|  | 177 | +        printf("\n\033[0m"); | 
|  | 178 | + | 
|  | 179 | +        // add the response to the messages | 
|  | 180 | +        messages.push_back({"assistant", strdup(response.c_str())}); | 
|  | 181 | +        prev_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), false, nullptr, 0); | 
|  | 182 | +        if (prev_len < 0) { | 
|  | 183 | +            fprintf(stderr, "failed to apply the chat template\n"); | 
|  | 184 | +            return 1; | 
|  | 185 | +        } | 
|  | 186 | +    } | 
|  | 187 | + | 
|  | 188 | +    // free resources | 
|  | 189 | +    for (auto & msg : messages) { | 
|  | 190 | +        free(const_cast<char *>(msg.content)); | 
|  | 191 | +    } | 
|  | 192 | +    llama_sampler_free(smpl); | 
|  | 193 | +    llama_free(ctx); | 
|  | 194 | +    llama_free_model(model); | 
|  | 195 | + | 
|  | 196 | +    return 0; | 
|  | 197 | +} | 
0 commit comments