Skip to content

Commit fce05aa

Browse files
committed
Refactor lambda into compute_tensor_averages() function
1 parent 5324558 commit fce05aa

File tree

1 file changed

+37
-31
lines changed

1 file changed

+37
-31
lines changed

tools/imatrix/imatrix.cpp

Lines changed: 37 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -127,6 +127,39 @@ static void process_tensor_name(const std::string & input, std::string & layer,
127127
}
128128
}
129129

130+
static std::vector<float> compute_tensor_averages(const Stats & tstats) {
131+
if (tstats.counts.empty()) return {};
132+
const size_t n_mat = tstats.counts.size();
133+
const size_t len = !tstats.in_sum.empty() ? tstats.in_sum.size() : tstats.in_sum2.size();
134+
135+
if (len == 0 || len % n_mat != 0) return {};
136+
const size_t row = len / n_mat;
137+
std::vector<float> vec;
138+
vec.reserve(len);
139+
140+
if (!tstats.in_sum.empty()) {
141+
for (size_t m = 0; m < n_mat; ++m) {
142+
const float c = (float)tstats.counts[m];
143+
if (c <= 0) return {};
144+
const size_t off = m * row;
145+
for (size_t j = 0; j < row; ++j) {
146+
vec.push_back(tstats.in_sum[off + j] / c);
147+
}
148+
}
149+
} else {
150+
for (size_t m = 0; m < n_mat; ++m) {
151+
const float c = (float)tstats.counts[m];
152+
if (c <= 0) return {};
153+
const size_t off = m * row;
154+
for (size_t j = 0; j < row; ++j) {
155+
vec.push_back(tstats.in_sum2[off + j] / c);
156+
}
157+
}
158+
}
159+
160+
return vec;
161+
}
162+
130163
static int compute_tensor_statistics(std::vector<tensor_statistics> & tstats, const std::string & name, const Stats & e) {
131164
if (e.in_sum2.size() % e.counts.size() != 0) {
132165
LOG_ERR("%s: activation size mismatch for tensor %s (%zu vs %zu)\n", __func__, name.c_str(), e.counts.size(), e.in_sum2.size());
@@ -222,33 +255,6 @@ static int compute_tensor_statistics(std::vector<tensor_statistics> & tstats, co
222255
static void compute_layer_statistics(std::vector<tensor_statistics> & tstats) {
223256
static const std::regex pattern(R"(blk\.(\d+)\.)");
224257

225-
auto build_avg = [](const Stats & s) -> std::vector<float> {
226-
if (s.counts.empty()) return {};
227-
const size_t n_mat = s.counts.size();
228-
const size_t len = !s.in_sum.empty() ? s.in_sum.size()
229-
: s.in_sum2.size();
230-
if (len == 0 || len % n_mat != 0) return {};
231-
const size_t row = len / n_mat;
232-
std::vector<float> v;
233-
v.reserve(len);
234-
if (!s.in_sum.empty()) {
235-
for (size_t m = 0; m < n_mat; ++m) {
236-
const float c = (float)s.counts[m];
237-
if (c <= 0) return {};
238-
const size_t off = m*row;
239-
for (size_t j = 0; j < row; ++j) v.push_back(s.in_sum[off+j]/c);
240-
}
241-
} else {
242-
for (size_t m = 0; m < n_mat; ++m) {
243-
const float c = (float)s.counts[m];
244-
if (c <= 0) return {};
245-
const size_t off = m*row;
246-
for (size_t j = 0; j < row; ++j) v.push_back(s.in_sum2[off+j]/c);
247-
}
248-
}
249-
return v;
250-
};
251-
252258
// compute the cosine similarity between the same tensors in consecutive layers
253259
for (auto & ts : tstats) {
254260
ts.cossim = 0;
@@ -261,8 +267,8 @@ static void compute_layer_statistics(std::vector<tensor_statistics> & tstats) {
261267
auto prev = std::find_if(tstats.begin(), tstats.end(),
262268
[tname](const tensor_statistics & t) { return t.tensor == tname; });
263269
if (prev == tstats.end()) continue;
264-
const auto curr_avg = build_avg(ts.stats);
265-
const auto prev_avg = build_avg(prev->stats);
270+
const auto curr_avg = compute_tensor_averages(ts.stats);
271+
const auto prev_avg = compute_tensor_averages(prev->stats);
266272
if (curr_avg.size() == prev_avg.size() && !curr_avg.empty()) {
267273
float dot_prod = 0.0f, vec1 = 0.0f, vec2 = 0.0f;
268274
for (size_t i = 0; i < curr_avg.size(); ++i) {
@@ -288,8 +294,8 @@ static void compute_layer_statistics(std::vector<tensor_statistics> & tstats) {
288294
auto prev = std::find_if(tstats.begin(), tstats.end(),
289295
[tname](const tensor_statistics & t) { return t.tensor == tname; });
290296
if (prev == tstats.end()) continue;
291-
const auto cur_avg = build_avg(ts.stats);
292-
const auto prev_avg = build_avg(prev->stats);
297+
const auto cur_avg = compute_tensor_averages(ts.stats);
298+
const auto prev_avg = compute_tensor_averages(prev->stats);
293299
if (cur_avg.empty() || prev_avg.empty() || cur_avg.size() != prev_avg.size()) continue;
294300

295301
float dist = 0.0;

0 commit comments

Comments
 (0)