Skip to content

Compile bug: Vulkan can not work on Android (cross-compilation from linux) - Aborted without explaination #11327

@samkoesnadi

Description

@samkoesnadi

Git commit

2139667

Operating systems

Linux, Other? (Please let us know in description)

GGML backends

Vulkan

Problem description & steps to reproduce

I have followed all instructions, all existing solutions to build Vulkan on Android using cross compilation method. I just can not seem to make it work. The cli just aborts without explanation.

My phone is Redmi Note 13 Pro 5G. Using qualcomm CPU and Adreno GPU.
Operating System I use to cross-compile: Linux. Although, I also tried to cross compile it on Windows with the exact same issue.
NDK=26 and 28 give the same result

I have attached the log output below. Thank you in advance!

First Bad Commit

No response

Compile command

cmake   -DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake   -DANDROID_ABI=arm64-v8a   -DANDROID_PLATFORM=latest   -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod   -DGGML_VULKAN=ON   -DGGML_VULKAN_CHECK_RESULTS=OFF   -DGGML_VULKAN_DEBUG=ON   -DGGML_VULKAN_MEMORY_DEBUG=ON   -DGGML_VULKAN_SHADER_DEBUG_INFO=ON   -DGGML_VULKAN_PERF=OFF   -DGGML_VULKAN_VALIDATE=OFF   -DGGML_VULKAN_RUN_TESTS=OFF -DVK_USE_PLATFORM_ANDROID_KHR=ON  -B build-android
cmake --build build-android --config Release -j8
cmake --install build-android --prefix install-android --config Release
adb push install-android /data/local/tmp/

Relevant log output

ggml_vk_instance_init()
ggml_vulkan: Found 1 Vulkan devices:
ggml_vk_print_gpu_info(0)
ggml_vulkan: 0 = Adreno (TM) 710 (Qualcomm Technologies Inc. Adreno Vulkan Driver) | uma: 1 | fp16: 1 | warp size: 64 | matrix cores: none
build: 4520 (2139667e) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
llama_model_load_from_file_impl: using device Vulkan0 (Adreno (TM) 710) - 7301 MiB free
llama_model_loader: loaded meta data with 37 key-value pairs and 338 tensors from /data/local/tmp/Qwen2-VL-2B-Instruct-Q4_K_L.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen2vl
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen2 VL 2B Instruct
llama_model_loader: - kv   3:                           general.finetune str              = Instruct
llama_model_loader: - kv   4:                           general.basename str              = Qwen2-VL
llama_model_loader: - kv   5:                         general.size_label str              = 2B
llama_model_loader: - kv   6:                            general.license str              = apache-2.0
llama_model_loader: - kv   7:                   general.base_model.count u32              = 1
llama_model_loader: - kv   8:                  general.base_model.0.name str              = Qwen2 VL 2B
llama_model_loader: - kv   9:          general.base_model.0.organization str              = Qwen
llama_model_loader: - kv  10:              general.base_model.0.repo_url str              = https://huggingface.co/Qwen/Qwen2-VL-2B
llama_model_loader: - kv  11:                               general.tags arr[str,2]       = ["multimodal", "image-text-to-text"]
llama_model_loader: - kv  12:                          general.languages arr[str,1]       = ["en"]
llama_model_loader: - kv  13:                        qwen2vl.block_count u32              = 28
llama_model_loader: - kv  14:                     qwen2vl.context_length u32              = 32768
llama_model_loader: - kv  15:                   qwen2vl.embedding_length u32              = 1536
llama_model_loader: - kv  16:                qwen2vl.feed_forward_length u32              = 8960
llama_model_loader: - kv  17:               qwen2vl.attention.head_count u32              = 12
llama_model_loader: - kv  18:            qwen2vl.attention.head_count_kv u32              = 2
llama_model_loader: - kv  19:                     qwen2vl.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  20:   qwen2vl.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  21:                          general.file_type u32              = 15
llama_model_loader: - kv  22:            qwen2vl.rope.dimension_sections arr[i32,4]       = [16, 24, 24, 0]
llama_model_loader: - kv  23:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  24:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  25:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  26:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  27:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  28:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  29:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  30:                tokenizer.ggml.bos_token_id u32              = 151643
llama_model_loader: - kv  31:                    tokenizer.chat_template str              = {% set image_count = namespace(value=...
llama_model_loader: - kv  32:               general.quantization_version u32              = 2
llama_model_loader: - kv  33:                      quantize.imatrix.file str              = /models_out/Qwen2-VL-2B-Instruct-GGUF...
llama_model_loader: - kv  34:                   quantize.imatrix.dataset str              = /training_dir/calibration_datav3.txt
llama_model_loader: - kv  35:             quantize.imatrix.entries_count i32              = 196
llama_model_loader: - kv  36:              quantize.imatrix.chunks_count i32              = 128
llama_model_loader: - type  f32:  141 tensors
llama_model_loader: - type q8_0:    1 tensors
llama_model_loader: - type q4_K:  168 tensors
llama_model_loader: - type q6_K:   28 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 988.60 MiB (5.37 BPW) 
load: special tokens cache size = 14
ggml_vk_get_device(0)
Initializing new vk_device
load: token to piece cache size = 0.9309 MB
print_info: arch             = qwen2vl
print_info: vocab_only       = 0
print_info: n_ctx_train      = 32768
print_info: n_embd           = 1536
ggml_vk_find_queue_family_index()print_info: n_layer          = 28

ggml_vk_find_queue_family_index()
print_info: n_head           = 12
print_info: n_head_kv        = 2
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 6
print_info: n_embd_k_gqa     = 256
print_info: n_embd_v_gqa     = 256
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: n_ff             = 8960
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 8
print_info: rope scaling     = linear
print_info: freq_base_train  = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 32768
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 1.5B
print_info: model params     = 1.54 B
print_info: general.name     = Qwen2 VL 2B Instruct
print_info: vocab type       = BPE
print_info: n_vocab          = 151936
print_info: n_merges         = 151387
print_info: BOS token        = 151643 '<|endoftext|>'
print_info: EOS token        = 151645 '<|im_end|>'
print_info: EOT token        = 151645 '<|im_end|>'
print_info: PAD token        = 151643 '<|endoftext|>'
print_info: LF token         = 148848 'ÄĬ'
print_info: EOG token        = 151643 '<|endoftext|>'
print_info: EOG token        = 151645 '<|im_end|>'
print_info: max token length = 256
ggml_vk_create_queue()
ggml_vk_load_shaders(Vulkan0)
ggml_vulkan: Compiling shadersggml_vk_create_pipeline(ggml_vk_create_pipeline(Vulkan0, matmul_f32_f32_m, main, 3ggml_vk_create_pipeline(, 56, (64Vulkan0, matmul_f32_f32_l, main, 3ggml_vk_create_pipeline(, 56, (128,64,Vulkan0ggml_vk_create_pipeline(,ggml_vk_create_pipeline(Vulkan0ggml_vk_create_pipeline(, matmul_f32_f32_aligned_s, main, matmul_f32_f32_s, Vulkan0ggml_vk_create_pipeline(1128,1), specialization_constants, 1Vulkan0, , , 3), specialization_constants, 1, main, 56, (32Vulkan0matmul_f32_f16_l, matmul_f32_f32_aligned_m, , main, 3, 0, 0, 00, 0, 3, mainmatmul_f32_f16_m, , 0)
, 56, (128,128,1), specialization_constants, 1, 0, 0Vulkan0, 0)
main, 3, 56, (56, (32,32,1), specialization_constants, 1, 0, 0, 0)
, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
)
, matmul_f32_f32_aligned_l, main, 3, 56,64,64,1), specialization_constants, 1, 0, 0, 0)
32,1), specialization_constants, 32, 0, , (128,128,1), specialization_constants, 128, 0, 0, 0)
0, 0)
.ggml_vk_create_pipeline(Vulkan0, matmul_f32_f16_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f32_f16_aligned_l, main, 3, 56, (128,128,1), specialization_constants, 128, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f32_f16_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f32_f16_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f16acc_l, main, 3, 56, (128,128,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f16acc_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f16acc_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f16acc_aligned_l, main, 3, 56, (128,128,1), specialization_constants, 128, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f16acc_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f16acc_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
.ggml_vk_create_pipeline(Vulkan0, matmul_f16_l, main, 3, 56, (128,128,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_aligned_l, main, 3, 56, (128,128,1), specialization_constants, 128, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f32_f16acc_l, main, 3, 56, (128,128,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f32_f16acc_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f32_f16acc_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f32_f16acc_aligned_l, main, 3, 56, (128,128,1), specialization_constants, 128, 0, 0, 0)
.ggml_vk_create_pipeline(Vulkan0, matmul_f16_f32_f16acc_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f32_f16acc_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f32_l, main, 3, 56, (128,128,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f32_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f32_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f32_aligned_l, main, 3, 56, (128,128,1), specialization_constants, 128, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f32_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_f16_f32_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_0_f32_f16acc_l, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_0_f32_f16acc_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
.ggml_vk_create_pipeline(Vulkan0, matmul_q4_0_f32_f16acc_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_0_f32_f16acc_aligned_l, main, 3, 56, (64,64,1), specialization_constants, 128, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_0_f32_f16acc_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_0_f32_f16acc_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_1_f32_f16acc_l, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_1_f32_f16acc_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_1_f32_f16acc_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_1_f32_f16acc_aligned_l, main, 3, 56, (64,64,1), specialization_constants, 128, 0, 0ggml_vk_create_pipeline(Vulkan0, matmul_q4_1_f32_f16acc_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_1_f32_f16acc_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
.ggml_vk_create_pipeline(Vulkan0, matmul_q5_0_f32_f16acc_l, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q5_0_f32_f16acc_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q5_0_f32_f16acc_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q5_0_f32_f16acc_aligned_l, main, 3, 56, (64,64,1), specialization_constants, 128, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q5_0_f32_f16acc_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q5_0_f32_f16acc_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q5_1_f32_f16acc_l, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q5_1_f32_f16acc_s, main, ggml_vk_create_pipeline(Vulkan0, matmul_q5_1_f32_f16acc_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q5_1_f32_f16acc_aligned_l, main, 3, 56, (64,64,1), specialization_constants, 128, 0, 0, 0)
.ggml_vk_create_pipeline(Vulkan0, matmul_q5_1_f32_f16acc_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q5_1_f32_f16acc_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q8_0_f32_f16acc_l, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q8_0_f32_f16acc_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q8_0_f32_f16acc_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q8_0_f32_f16acc_aligned_l, main, 3, 56, (64,64,1), specialization_constants, 128, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q8_0_f32_f16acc_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q8_0_f32_f16acc_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q2_k_f32_f16acc_l, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q2_k_f32_f16acc_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
.ggml_vk_create_pipeline(Vulkan0, matmul_q2_k_f32_f16acc_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q2_k_f32_f16acc_aligned_l, main, 3, 56, (64,64,1), specialization_constants, 128, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q2_k_f32_f16acc_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q2_k_f32_f16acc_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q3_k_f32_f16acc_l, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q3_k_f32_f16acc_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q3_k_f32_f16acc_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q3_k_f32_f16acc_aligned_l, main, 3, 56, (64,64,1), specialization_constants, 128, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q3_k_f32_f16acc_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q3_k_f32_f16acc_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
.ggml_vk_create_pipeline(Vulkan0, matmul_q4_k_f32_f16acc_l, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_k_f32_f16acc_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_k_f32_f16acc_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_k_f32_f16acc_aligned_l, main, 3, 56, (64,64,1), specialization_constants, 128, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_k_f32_f16acc_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q5_k_f32_f16acc_l, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q4_k_f32_f16acc_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q5_k_f32_f16acc_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q5_k_f32_f16acc_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q5_k_f32_f16acc_aligned_l, main, 3, 56, (64,64,1), specialization_constants, 128, 0, 0, 0)
.ggml_vk_create_pipeline(Vulkan0, matmul_q5_k_f32_f16acc_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q5_k_f32_f16acc_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q6_k_f32_f16acc_l, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q6_k_f32_f16acc_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q6_k_f32_f16acc_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q6_k_f32_f16acc_aligned_l, main, 3, 56, (64,64,1), specialization_constants, 128, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q6_k_f32_f16acc_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_q6_k_f32_f16acc_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_iq4_nl_f32_f16acc_l, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_iq4_nl_f32_f16acc_m, main, 3, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
.ggml_vk_create_pipeline(Vulkan0, matmul_iq4_nl_f32_f16acc_s, main, 3, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_iq4_nl_f32_f16acc_aligned_l, main, 3, 56, (64,64,1), specialization_constants, 128, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_iq4_nl_f32_f16acc_aligned_m, main, 3, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_iq4_nl_f32_f16acc_aligned_s, main, 3, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_id_f32_f32_l, main, 4, 56, (128,128,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_id_f32_f32_m, main, 4, 56, (64,64,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_id_f32_f32_s, main, 4, 56, (32,32,1), specialization_constants, 1, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_id_f32_f32_aligned_l, main, 4, 56, (128,128,1), specialization_constants, 128, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_id_f32_f32_aligned_m, main, 4, 56, (64,64,1), specialization_constants, 64, 0, 0, 0)
ggml_vk_create_pipeline(Vulkan0, matmul_id_f32_f32_aligned_s, main, 4, 56, (32,32,1), specialization_constants, 32, 0, 0, 0)
Aborted

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions