Skip to content

Eval bug: model producing gibberish for Orion14b-chatΒ #12411

@aspwow

Description

@aspwow

Name and Version

llama-cli --version
version: 5170 (658987c)
built with MSVC 19.43.34808.0 for x64

Operating systems

Windows

GGML backends

CPU

Hardware

Intel(R) Core(TM) Ultra 7 155H

Models

mmnga/OrionStarAI-Orion-14B-Chat-RAG-gguf

Problem description & steps to reproduce

llama-cli.exe -m "C:\xverse-13B\orionstar-14b-chat-rag.gguf" -i --jinja

First Bad Commit

Description

I am encountering an issue while using the latest version of llama.cpp ([b5170]) for inference with a gguf model, where the model generates nonsensical outputs.
Please fix this issue, Thanks a lot!

Additional Context
Previous Version > https://github.com/ggml-org/llama.cpp/releases/tag/b1990
In the previous version ([llama-b1990]), there were no issues with inference producing nonsensical outputs. Therefore, I suspect that some changes introduced in the latest version may have caused this abnormal output from the model. I would appreciate it if you could investigate this issue.

Thank you for your attention to this matter!

Relevant log output

C:\Users\aspwo\Downloads\llama-b5170-bin-win-openblas-x64>llama-cli.exe -m "C:\xverse-13B\orionstar-14b-chat-rag.gguf"  -i --jinja 
build: 5170 (658987cf) with MSVC 19.43.34808.0 for x64
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_loader: loaded meta data with 22 key-value pairs and 444 tensors from C:\xverse-13B\orionstar-14b-chat-rag.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = orion
llama_model_loader: - kv   1:                          general.file_type u32              = 15
llama_model_loader: - kv   2:                               general.name str              = Orion-14B-Chat-RAG
llama_model_loader: - kv   3:                   orion.tensor_data_layout str              = Meta AI original pth
llama_model_loader: - kv   4:                       orion.context_length u32              = 4096
llama_model_loader: - kv   5:                     orion.embedding_length u32              = 5120
llama_model_loader: - kv   6:                          orion.block_count u32              = 40
llama_model_loader: - kv   7:                  orion.feed_forward_length u32              = 15360
llama_model_loader: - kv   8:                 orion.attention.head_count u32              = 40
llama_model_loader: - kv   9:              orion.attention.head_count_kv u32              = 40
llama_model_loader: - kv  10:         orion.attention.layer_norm_epsilon f32              = 0.000010
llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr[str,84608]   = ["<unk>", "<s>", "</s>", " ", "▁▁...
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr[f32,84608]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,84608]   = [2, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  17:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  18:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  19:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  20:               general.quantization_version u32              = 2
llama_model_loader: - kv  21:                    tokenizer.chat_template str              = {% for message in messages %}{% if lo...
llama_model_loader: - type  f32:  162 tensors
llama_model_loader: - type q4_K:  241 tensors
llama_model_loader: - type q6_K:   41 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 8.21 GiB (4.86 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 4
load: token to piece cache size = 0.4578 MB
print_info: arch             = orion
print_info: vocab_only       = 0
print_info: n_ctx_train      = 4096
print_info: n_embd           = 5120
print_info: n_layer          = 40
print_info: n_head           = 40
print_info: n_head_kv        = 40
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: n_swa_pattern    = 1
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 1
print_info: n_embd_k_gqa     = 5120
print_info: n_embd_v_gqa     = 5120
print_info: f_norm_eps       = 1.0e-05
print_info: f_norm_rms_eps   = 0.0e+00
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 15360
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 0
print_info: rope scaling     = linear
print_info: freq_base_train  = 10000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 4096
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 14B
print_info: model params     = 14.50 B
print_info: general.name     = Orion-14B-Chat-RAG
print_info: vocab type       = SPM
print_info: n_vocab          = 84608
print_info: n_merges         = 0
print_info: BOS token        = 1 '<s>'
print_info: EOS token        = 2 '</s>'
print_info: UNK token        = 0 '<unk>'
print_info: PAD token        = 0 '<unk>'
print_info: LF token         = 64 '<0x0A>'
print_info: EOG token        = 2 '</s>'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 0 repeating layers to GPU
load_tensors: offloaded 0/41 layers to GPU
load_tensors:  CPU_AARCH64 model buffer size =  6187.50 MiB
load_tensors:   CPU_Mapped model buffer size =  8402.56 MiB
...............................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 10000.0
llama_context: freq_scale    = 1
llama_context:        CPU  output buffer size =     0.32 MiB
init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 40, can_shift = 1
init:        CPU KV buffer size =  3200.00 MiB
llama_context: KV self size  = 3200.00 MiB, K (f16): 1600.00 MiB, V (f16): 1600.00 MiB
llama_context:        CPU compute buffer size =   368.01 MiB
llama_context: graph nodes  = 1447
llama_context: graph splits = 162 (with bs=512), 1 (with bs=1)
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 16
main: chat template is available, enabling conversation mode (disable it with -no-cnv)
main: chat template example:
Human: You are a helpful assistant
Hello

Assistant: </s>Hi there</s>Human: How are you?

Assistant:

system_info: n_threads = 16 (n_threads_batch = 16) / 22 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |

main: interactive mode on.
sampler seed: 1928939138
sampler params:
        repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
        dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096
        top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800
        mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
generate: n_ctx = 4096, n_batch = 2048, n_predict = -1, n_keep = 0

== Running in interactive mode. ==
 - Press Ctrl+C to interject at any time.
 - Press Return to return control to the AI.
 - To return control without starting a new line, end your input with '/'.
 - If you want to submit another line, end your input with '\'.
 - Not using system message. To change it, set a different value via -sys PROMPT


> Hello!

Hello! I'm Assistant, a large language model trained by OpenAI. I'm here to help you with any questions you have. Is there anything specific you'd like to know?

> What's AI?
😊 How can I help you with any questions or anything you need any questions or anything I can help you with any questions or anything you need any questions I'm here. How can I can help you can answer your questions I am here. I am a large AI. I can help you. What you are you can answer.I can answer you. you, chat. I can help me.

> What ?
. your or you. answer. chat. you:. or. or any? to, in. you I or you can. answer, chat or,

>

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions