-
Notifications
You must be signed in to change notification settings - Fork 13.7k
Closed
Labels
Description
Name and Version
llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 3060, compute capability 8.6, VMM: yes
register_backend: registered backend CUDA (1 devices)
register_device: registered device CUDA0 (NVIDIA GeForce RTX 3060)
register_backend: registered backend BLAS (1 devices)
register_device: registered device BLAS (OpenBLAS)
register_backend: registered backend RPC (0 devices)
register_backend: registered backend CPU (1 devices)
register_device: registered device CPU (AMD Ryzen 7 3800X 8-Core Processor)
version: 5435 (a4090d117)
built with cc (GCC) 15.1.1 20250425 for x86_64-pc-linux-gnu
Operating systems
Linux
GGML backends
CUDA
Hardware
Nvidia 3060 12Gb
AMD Ryzen 7 3800X 8-Core
Models
Original MS build phi-4-Q4_K.gguf
Problem description & steps to reproduce
Last working version is b5426, after that llama-cli crashes with 'Segmentation fault'
Command: llama-cli -m /home/ftp/AI/microsoft/phi-4-gguf/phi-4-Q4_K.gguf -st --simple-io --flash-attn --no-display-prompt -ngl 41 --threads 8 --temp 0.25 --top-p 0.95 --ctx-size 2048 -p "$(cat ~/dox/AI/PROMPT.txt)"
Workaround: downgrade to b5426
First Bad Commit
b5429 (supposedly)
Relevant log output
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 3060, compute capability 8.6, VMM: yes
register_backend: registered backend CUDA (1 devices)
register_device: registered device CUDA0 (NVIDIA GeForce RTX 3060)
register_backend: registered backend BLAS (1 devices)
register_device: registered device BLAS (OpenBLAS)
register_backend: registered backend RPC (0 devices)
register_backend: registered backend CPU (1 devices)
register_device: registered device CPU (AMD Ryzen 7 3800X 8-Core Processor)
build: 5435 (a4090d117) with cc (GCC) 15.1.1 20250425 for x86_64-pc-linux-gnu (debug)
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3060) - 10769 MiB free
llama_model_loader: loaded meta data with 33 key-value pairs and 243 tensors from /home/ftp/AI/microsoft/phi-4-gguf/phi-4-Q4_K.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = phi3
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Phi 4
llama_model_loader: - kv 3: general.version str = 4
llama_model_loader: - kv 4: general.organization str = Microsoft
llama_model_loader: - kv 5: general.basename str = phi
llama_model_loader: - kv 6: general.size_label str = 15B
llama_model_loader: - kv 7: general.license str = mit
llama_model_loader: - kv 8: general.license.link str = https://huggingface.co/microsoft/phi-...
llama_model_loader: - kv 9: general.tags arr[str,7] = ["phi", "nlp", "math", "code", "chat"...
llama_model_loader: - kv 10: general.languages arr[str,1] = ["en"]
llama_model_loader: - kv 11: phi3.context_length u32 = 16384
llama_model_loader: - kv 12: phi3.rope.scaling.original_context_length u32 = 16384
llama_model_loader: - kv 13: phi3.embedding_length u32 = 5120
llama_model_loader: - kv 14: phi3.feed_forward_length u32 = 17920
llama_model_loader: - kv 15: phi3.block_count u32 = 40
llama_model_loader: - kv 16: phi3.attention.head_count u32 = 40
llama_model_loader: - kv 17: phi3.attention.head_count_kv u32 = 10
llama_model_loader: - kv 18: phi3.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 19: phi3.rope.dimension_count u32 = 128
llama_model_loader: - kv 20: phi3.rope.freq_base f32 = 250000.000000
llama_model_loader: - kv 21: phi3.attention.sliding_window u32 = 0
llama_model_loader: - kv 22: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 23: tokenizer.ggml.pre str = dbrx
llama_model_loader: - kv 24: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 25: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 26: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 27: tokenizer.ggml.bos_token_id u32 = 100257
llama_model_loader: - kv 28: tokenizer.ggml.eos_token_id u32 = 100265
llama_model_loader: - kv 29: tokenizer.ggml.padding_token_id u32 = 100349
llama_model_loader: - kv 30: tokenizer.chat_template str = {% for message in messages %}{% if (m...
llama_model_loader: - kv 31: general.quantization_version u32 = 2
llama_model_loader: - kv 32: general.file_type u32 = 15
llama_model_loader: - type f32: 81 tensors
llama_model_loader: - type q4_K: 101 tensors
llama_model_loader: - type q5_K: 40 tensors
llama_model_loader: - type q6_K: 21 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 8.43 GiB (4.94 BPW)
load: special tokens cache size = 96
load: token to piece cache size = 0.6151 MB
print_info: arch = phi3
print_info: vocab_only = 0
print_info: n_ctx_train = 16384
print_info: n_embd = 5120
print_info: n_layer = 40
print_info: n_head = 40
print_info: n_head_kv = 10
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_swa_pattern = 1
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 4
print_info: n_embd_k_gqa = 1280
print_info: n_embd_v_gqa = 1280
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 17920
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 250000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 16384
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 14B
print_info: model params = 14.66 B
print_info: general.name = Phi 4
print_info: vocab type = BPE
print_info: n_vocab = 100352
print_info: n_merges = 100000
print_info: BOS token = 100257 '<|endoftext|>'
print_info: EOS token = 100265 '<|im_end|>'
print_info: EOT token = 100265 '<|im_end|>'
print_info: PAD token = 100349 '<|dummy_85|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 100258 '<|fim_prefix|>'
print_info: FIM SUF token = 100260 '<|fim_suffix|>'
print_info: FIM MID token = 100259 '<|fim_middle|>'
print_info: EOG token = 100257 '<|endoftext|>'
print_info: EOG token = 100265 '<|im_end|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 40 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 41/41 layers to GPU
load_tensors: CUDA0 model buffer size = 8354.71 MiB
load_tensors: CPU_Mapped model buffer size = 275.62 MiB
.......................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 2048
llama_context: n_ctx_per_seq = 2048
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 1
llama_context: freq_base = 250000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (2048) < n_ctx_train (16384) -- the full capacity of the model will not be utilized
llama_context: CUDA_Host output buffer size = 0.38 MiB
llama_kv_cache_unified: CUDA0 KV buffer size = 400.00 MiB
llama_kv_cache_unified: size = 400.00 MiB ( 2048 cells, 40 layers), K (f16): 200.00 MiB, V (f16): 200.00 MiB
Segmentation fault (core dumped)