Skip to content

Eval bug: mtmd: "flash attention is disabled / please report this on github as an issue" #16950

@ddh0

Description

@ddh0

Name and Version

ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 4060 Ti, compute capability 8.9, VMM: yes
version: 6926 (2f966b8ed)
built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu

Operating systems

Linux

GGML backends

CUDA

Hardware

4060 Ti 16GB
Ryzen 7 7700X
128GB DDR5-6400 @ 4800 MT/s

Models

Qwen_Qwen3-VL-32B-Instruct-Q5_K_M.gguf from 🤗 bartowski/Qwen_Qwen3-VL-32B-Instruct-GGUF

Same error occurs on other Qwen3-VL models when using vision

Problem description & steps to reproduce

The following warning messages appear when loading Qwen3-VL-32B model with its bf16 mmproj when flash_attn is on or auto. The warning does not appear when flash_attn is off.

warmup: *****************************************************************
warmup: WARNING: flash attention not supported by CUDA0, memory usage will increase
warmup: op params: 
warmup:    dst: type = f32, ne = [72 16 1024 1], nb = [4 288 4608 4718592]
warmup:   src0: type = f32, ne = [72 1024 16 1], nb = [4 4608 288 4718592]
warmup:   src1: type = f16, ne = [72 1024 16 1], nb = [2 144 147456 2359296]
warmup:   src2: type = f16, ne = [72 1024 16 1], nb = [2 144 147456 2359296]
warmup: please report this on github as an issue
warmup: *****************************************************************
alloc_compute_meta: warmup with image size = 512 x 512
alloc_compute_meta:      CUDA0 compute buffer size =   112.02 MiB
alloc_compute_meta:        CPU compute buffer size =    13.50 MiB
alloc_compute_meta: graph splits = 1, nodes = 907
warmup: flash attention is disabled
warmup: *****************************************************************
warmup: WARNING: the CLIP graph uses unsupported operators by the backend
warmup:          the performance will be suboptimal                      
warmup:          list of unsupported ops (backend=CUDA0):
warmup:         SOFT_MAX: type = f32, ne = [1024 1024 16 1]
warmup:             CONT: type = f32, ne = [1024 72 16 1]
warmup:          PERMUTE: type = f32, ne = [72 1024 16 1]
warmup:             ROPE: type = f32, ne = [72 16 1024 1]
warmup:             VIEW: type = f32, ne = [72 16 1024 1]
warmup:             VIEW: type = f32, ne = [72 16 1024 1]
warmup:          MUL_MAT: type = f32, ne = [3456 1024 1 1]
warmup:              MUL: type = f32, ne = [1152 1024 1 1]
warmup:              ADD: type = f32, ne = [1152 1024 1 1]
warmup:            UNARY: type = f32, ne = [4608 256 1 1]
warmup:              ADD: type = f32, ne = [4304 1024 1 1]
warmup:              ADD: type = f32, ne = [1152 1024 1 1]
warmup:             NORM: type = f32, ne = [1152 1024 1 1]
warmup:              ADD: type = f32, ne = [1152 1024 1 1]
warmup:             CONT: type = f32, ne = [1152 1024 1 1]
warmup:          MUL_MAT: type = f32, ne = [72 1024 16 1]
warmup:          MUL_MAT: type = f32, ne = [1024 1024 16 1]
warmup:             NORM: type = f32, ne = [1152 1024 1 1]
warmup:          PERMUTE: type = f32, ne = [72 1024 16 1]
warmup:             ROPE: type = f32, ne = [72 16 1024 1]
warmup:             VIEW: type = f32, ne = [72 16 1024 1]
warmup:              ADD: type = f32, ne = [3456 1024 1 1]
warmup:              ADD: type = f32, ne = [1152 1024 1 1]
warmup:             NORM: type = f32, ne = [1152 1024 1 1]
warmup:              ADD: type = f32, ne = [1152 1024 1 1]
warmup:             VIEW: type = f32, ne = [72 16 1024 1]
warmup:          MUL_MAT: type = f32, ne = [4608 256 1 1]
warmup: flash attention is disabled
warmup: please report this on github as an issue
warmup: ref: https://github.com/ggml-org/llama.cpp/pull/16837#issuecomment-3461676118
warmup: *****************************************************************

First Bad Commit

2f966b8ed87514e74bb96592217226cb6a6974dd

Relevant log output

Command

exportv LLAMA_ARG_THREADS 8
exportv LLAMA_LOG_COLORS on
exportv LLAMA_LOG_PREFIX 1
exportv LLAMA_LOG_TIMESTAMPS 1
exportv LLAMA_ARG_CTX_CHECKPOINTS 32
exportv LLAMA_ARG_CONTEXT_SHIFT 0
exportv LLAMA_ARG_CACHE_REUSE 0
exportv LLAMA_ARG_CACHE_RAM 51200
exportv LLAMA_ARG_THREADS_HTTP $(nproc)
exportv LLAMA_ARG_ALIAS llama
exportv LLAMA_ARG_SSL_KEY_FILE ~/keys/server.key
exportv LLAMA_ARG_SSL_CERT_FILE ~/keys/server.crt
exportv LLAMA_API_KEY GERGANOV
exportv LLAMA_ARG_HOST 0.0.0.0
exportv LLAMA_ARG_PORT 12800
exportv LLAMA_ARG_NO_MMAP 1
exportv LLAMA_ARG_MLOCK 0
unset LLAMA_CHAT_TEMPLATE_KWARGS
#exportv LLAMA_CHAT_TEMPLATE_KWARGS "{\"enable_thinking\": false}"
unset LLAMA_ARG_CHAT_TEMPLATE_FILE
exportv LLAMA_ARG_JINJA 1
exportv LLAMA_ARG_MODEL ~/gguf/Qwen3-VL-32B-Instruct-Q5_K_M.gguf
exportv LLAMA_ARG_FLASH_ATTN auto
exportv LLAMA_ARG_CTX_SIZE 8192
exportv LLAMA_ARG_N_PARALLEL 1
exportv LLAMA_ARG_BATCH 1024
exportv LLAMA_ARG_UBATCH 1024
exportv LLAMA_ARG_N_GPU_LAYERS 999
exportv OT "ffn_(?:up|gate|down)=CPU"
exportv LLAMA_ARG_MMPROJ ~/gguf/mmproj-Qwen3-VL-32B-Instruct-bf16.gguf
~/llama.cpp/build/bin/llama-server -ot $OT --samplers "top_k;top_p;temperature" --top-k 64 --top-p 0.9 --temp 1.25

Console output

ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 4060 Ti, compute capability 8.9, VMM: yes
0.00.000.478 W main: setting n_parallel = 4 and kv_unified = true
0.00.000.488 I build: 6926 (2f966b8ed) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
0.00.000.522 I system info: n_threads = 8, n_threads_batch = 8, total_threads = 16
0.00.000.523 I 
0.00.000.581 I system_info: n_threads = 8 (n_threads_batch = 8) / 16 | CUDA : ARCHS = 890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | FA_ALL_QUANTS = 1 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 | 
0.00.000.582 I 
0.00.000.582 I Running with SSL: key = /home/dylan/keys/server.key, cert = /home/dylan/keys/server.crt
0.00.002.629 I main: binding port with default address family
0.00.003.750 I main: HTTP server is listening, hostname: 0.0.0.0, port: 12800, http threads: 16
0.00.003.752 I main: loading model
0.00.003.752 I srv    load_model: loading model '/home/dylan/gguf/Qwen3-VL-32B-Instruct-Q5_K_M.gguf'
0.00.100.528 I llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 4060 Ti) (0000:01:00.0) - 15805 MiB free
0.00.124.519 I llama_model_loader: loaded meta data with 36 key-value pairs and 707 tensors from /home/dylan/gguf/Qwen3-VL-32B-Instruct-Q5_K_M.gguf (version GGUF V3 (latest))
0.00.124.535 I llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
0.00.124.542 I llama_model_loader: - kv   0:                       general.architecture str              = qwen3vl
0.00.124.543 I llama_model_loader: - kv   1:                               general.type str              = model
0.00.124.543 I llama_model_loader: - kv   2:                               general.name str              = Qwen3 VL 32B Instruct
0.00.124.544 I llama_model_loader: - kv   3:                           general.finetune str              = Instruct
0.00.124.544 I llama_model_loader: - kv   4:                           general.basename str              = Qwen3-VL
0.00.124.544 I llama_model_loader: - kv   5:                         general.size_label str              = 32B
0.00.124.544 I llama_model_loader: - kv   6:                            general.license str              = apache-2.0
0.00.124.559 I llama_model_loader: - kv   7:                               general.tags arr[str,1]       = ["image-text-to-text"]
0.00.124.561 I llama_model_loader: - kv   8:                        qwen3vl.block_count u32              = 64
0.00.124.562 I llama_model_loader: - kv   9:                     qwen3vl.context_length u32              = 262144
0.00.124.563 I llama_model_loader: - kv  10:                   qwen3vl.embedding_length u32              = 5120
0.00.124.563 I llama_model_loader: - kv  11:                qwen3vl.feed_forward_length u32              = 25600
0.00.124.563 I llama_model_loader: - kv  12:               qwen3vl.attention.head_count u32              = 64
0.00.124.564 I llama_model_loader: - kv  13:            qwen3vl.attention.head_count_kv u32              = 8
0.00.124.569 I llama_model_loader: - kv  14:                     qwen3vl.rope.freq_base f32              = 5000000.000000
0.00.124.569 I llama_model_loader: - kv  15:   qwen3vl.attention.layer_norm_rms_epsilon f32              = 0.000001
0.00.124.570 I llama_model_loader: - kv  16:               qwen3vl.attention.key_length u32              = 128
0.00.124.570 I llama_model_loader: - kv  17:             qwen3vl.attention.value_length u32              = 128
0.00.124.572 I llama_model_loader: - kv  18:            qwen3vl.rope.dimension_sections arr[i32,4]       = [24, 20, 20, 0]
0.00.124.572 I llama_model_loader: - kv  19:                 qwen3vl.n_deepstack_layers u32              = 3
0.00.124.573 I llama_model_loader: - kv  20:                       tokenizer.ggml.model str              = gpt2
0.00.124.573 I llama_model_loader: - kv  21:                         tokenizer.ggml.pre str              = qwen2
0.00.135.533 I llama_model_loader: - kv  22:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
0.00.138.776 I llama_model_loader: - kv  23:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0.00.150.481 I llama_model_loader: - kv  24:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
0.00.150.483 I llama_model_loader: - kv  25:                tokenizer.ggml.eos_token_id u32              = 151645
0.00.150.483 I llama_model_loader: - kv  26:            tokenizer.ggml.padding_token_id u32              = 151643
0.00.150.483 I llama_model_loader: - kv  27:                tokenizer.ggml.bos_token_id u32              = 151643
0.00.150.484 I llama_model_loader: - kv  28:               tokenizer.ggml.add_bos_token bool             = false
0.00.150.485 I llama_model_loader: - kv  29:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
0.00.150.485 I llama_model_loader: - kv  30:               general.quantization_version u32              = 2
0.00.150.485 I llama_model_loader: - kv  31:                          general.file_type u32              = 17
0.00.150.486 I llama_model_loader: - kv  32:                      quantize.imatrix.file str              = /models_out/Qwen3-VL-32B-Instruct-GGU...
0.00.150.486 I llama_model_loader: - kv  33:                   quantize.imatrix.dataset str              = /training_dir/calibration_datav5.txt
0.00.150.486 I llama_model_loader: - kv  34:             quantize.imatrix.entries_count u32              = 448
0.00.150.487 I llama_model_loader: - kv  35:              quantize.imatrix.chunks_count u32              = 818
0.00.150.488 I llama_model_loader: - type  f32:  257 tensors
0.00.150.489 I llama_model_loader: - type q5_K:  385 tensors
0.00.150.489 I llama_model_loader: - type q6_K:   65 tensors
0.00.150.491 I print_info: file format = GGUF V3 (latest)
0.00.150.491 I print_info: file type   = Q5_K - Medium
0.00.150.492 I print_info: file size   = 21.61 GiB (5.67 BPW) 
0.00.207.400 I load: printing all EOG tokens:
0.00.207.401 I load:   - 151643 ('<|endoftext|>')
0.00.207.402 I load:   - 151645 ('<|im_end|>')
0.00.207.402 I load:   - 151662 ('<|fim_pad|>')
0.00.207.403 I load:   - 151663 ('<|repo_name|>')
0.00.207.403 I load:   - 151664 ('<|file_sep|>')
0.00.207.470 I load: special tokens cache size = 26
0.00.241.920 I load: token to piece cache size = 0.9311 MB
0.00.241.931 I print_info: arch             = qwen3vl
0.00.241.931 I print_info: vocab_only       = 0
0.00.241.931 I print_info: n_ctx_train      = 262144
0.00.241.931 I print_info: n_embd           = 20480
0.00.241.931 I print_info: n_layer          = 64
0.00.241.939 I print_info: n_head           = 64
0.00.241.941 I print_info: n_head_kv        = 8
0.00.241.941 I print_info: n_rot            = 128
0.00.241.941 I print_info: n_swa            = 0
0.00.241.943 I print_info: is_swa_any       = 0
0.00.241.943 I print_info: n_embd_head_k    = 128
0.00.241.943 I print_info: n_embd_head_v    = 128
0.00.241.945 I print_info: n_gqa            = 8
0.00.241.947 I print_info: n_embd_k_gqa     = 1024
0.00.241.948 I print_info: n_embd_v_gqa     = 1024
0.00.241.949 I print_info: f_norm_eps       = 0.0e+00
0.00.241.950 I print_info: f_norm_rms_eps   = 1.0e-06
0.00.241.950 I print_info: f_clamp_kqv      = 0.0e+00
0.00.241.950 I print_info: f_max_alibi_bias = 0.0e+00
0.00.241.950 I print_info: f_logit_scale    = 0.0e+00
0.00.241.951 I print_info: f_attn_scale     = 0.0e+00
0.00.241.952 I print_info: n_ff             = 25600
0.00.241.952 I print_info: n_expert         = 0
0.00.241.952 I print_info: n_expert_used    = 0
0.00.241.953 I print_info: n_expert_groups  = 0
0.00.241.953 I print_info: n_group_used     = 0
0.00.241.953 I print_info: causal attn      = 1
0.00.241.953 I print_info: pooling type     = 0
0.00.241.953 I print_info: rope type        = 40
0.00.241.954 I print_info: rope scaling     = linear
0.00.241.955 I print_info: freq_base_train  = 5000000.0
0.00.241.955 I print_info: freq_scale_train = 1
0.00.241.955 I print_info: n_ctx_orig_yarn  = 262144
0.00.241.955 I print_info: rope_finetuned   = unknown
0.00.241.956 I print_info: mrope sections   = [24, 20, 20, 0]
0.00.241.956 I print_info: model type       = 32B
0.00.241.957 I print_info: model params     = 32.76 B
0.00.241.957 I print_info: general.name     = Qwen3 VL 32B Instruct
0.00.241.960 I print_info: vocab type       = BPE
0.00.241.961 I print_info: n_vocab          = 151936
0.00.241.961 I print_info: n_merges         = 151387
0.00.241.962 I print_info: BOS token        = 151643 '<|endoftext|>'
0.00.241.962 I print_info: EOS token        = 151645 '<|im_end|>'
0.00.241.962 I print_info: EOT token        = 151645 '<|im_end|>'
0.00.241.962 I print_info: PAD token        = 151643 '<|endoftext|>'
0.00.241.963 I print_info: LF token         = 198 'Ċ'
0.00.241.963 I print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
0.00.241.963 I print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
0.00.241.963 I print_info: FIM MID token    = 151660 '<|fim_middle|>'
0.00.241.963 I print_info: FIM PAD token    = 151662 '<|fim_pad|>'
0.00.241.963 I print_info: FIM REP token    = 151663 '<|repo_name|>'
0.00.241.964 I print_info: FIM SEP token    = 151664 '<|file_sep|>'
0.00.241.964 I print_info: EOG token        = 151643 '<|endoftext|>'
0.00.241.964 I print_info: EOG token        = 151645 '<|im_end|>'
0.00.241.964 I print_info: EOG token        = 151662 '<|fim_pad|>'
0.00.241.964 I print_info: EOG token        = 151663 '<|repo_name|>'
0.00.241.964 I print_info: EOG token        = 151664 '<|file_sep|>'
0.00.241.964 I print_info: max token length = 256
0.00.241.965 I load_tensors: loading model tensors, this can take a while... (mmap = false)
0.06.347.134 I load_tensors: offloading 64 repeating layers to GPU
0.06.347.136 I load_tensors: offloading output layer to GPU
0.06.347.137 I load_tensors: offloaded 65/65 layers to GPU
0.06.347.143 I load_tensors:          CPU model buffer size =   510.04 MiB
0.06.347.144 I load_tensors:        CUDA0 model buffer size =  4592.40 MiB
0.06.347.145 I load_tensors:    CUDA_Host model buffer size = 17031.25 MiB
.................................................................................................
0.08.133.282 I llama_context: constructing llama_context
0.08.133.284 I llama_context: n_seq_max     = 4
0.08.133.285 I llama_context: n_ctx         = 8192
0.08.133.285 I llama_context: n_ctx_seq     = 8192
0.08.133.285 I llama_context: n_batch       = 1024
0.08.133.285 I llama_context: n_ubatch      = 1024
0.08.133.286 I llama_context: causal_attn   = 1
0.08.133.287 I llama_context: flash_attn    = auto
0.08.133.287 I llama_context: kv_unified    = true
0.08.133.291 I llama_context: freq_base     = 5000000.0
0.08.133.291 I llama_context: freq_scale    = 1
0.08.133.291 W llama_context: n_ctx_seq (8192) < n_ctx_train (262144) -- the full capacity of the model will not be utilized
0.08.134.335 I llama_context:  CUDA_Host  output buffer size =     2.32 MiB
0.08.134.593 I llama_kv_cache:      CUDA0 KV buffer size =  2048.00 MiB
0.08.142.396 I llama_kv_cache: size = 2048.00 MiB (  8192 cells,  64 layers,  4/1 seqs), K (f16): 1024.00 MiB, V (f16): 1024.00 MiB
0.08.143.107 I llama_context: Flash Attention was auto, set to enabled
0.08.163.141 I llama_context:      CUDA0 compute buffer size =   613.50 MiB
0.08.163.142 I llama_context:  CUDA_Host compute buffer size =    52.04 MiB
0.08.163.143 I llama_context: graph nodes  = 2247
0.08.163.143 I llama_context: graph splits = 194 (with bs=1024), 130 (with bs=1)
0.08.164.054 I common_init_from_params: added <|endoftext|> logit bias = -inf
0.08.164.055 I common_init_from_params: added <|im_end|> logit bias = -inf
0.08.164.056 I common_init_from_params: added <|fim_pad|> logit bias = -inf
0.08.164.056 I common_init_from_params: added <|repo_name|> logit bias = -inf
0.08.164.056 I common_init_from_params: added <|file_sep|> logit bias = -inf
0.08.164.059 I common_init_from_params: setting dry_penalty_last_n to ctx_size = 8192
0.08.164.059 W common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
clip_model_loader: model name:   Qwen3 VL 32B Instruct
clip_model_loader: description:  
clip_model_loader: GGUF version: 3
clip_model_loader: alignment:    32
clip_model_loader: n_tensors:    352
clip_model_loader: n_kv:         25

clip_model_loader: has vision encoder
clip_ctx: CLIP using CUDA0 backend
load_hparams: projector:          qwen3vl_merger
load_hparams: n_embd:             1152
load_hparams: n_head:             16
load_hparams: n_ff:               4304
load_hparams: n_layer:            27
load_hparams: ffn_op:             gelu
load_hparams: projection_dim:     5120

--- vision hparams ---
load_hparams: image_size:         768
load_hparams: patch_size:         16
load_hparams: has_llava_proj:     0
load_hparams: minicpmv_version:   0
load_hparams: n_merge:            2
load_hparams: n_wa_pattern:       0
load_hparams: image_min_pixels:   8192
load_hparams: image_max_pixels:   2097152

load_hparams: model size:         1144.71 MiB
load_hparams: metadata size:      0.12 MiB
alloc_compute_meta: warmup with image size = 512 x 512
alloc_compute_meta:      CUDA0 compute buffer size =    55.52 MiB
alloc_compute_meta:        CPU compute buffer size =    13.50 MiB
alloc_compute_meta: graph splits = 55, nodes = 853
warmup: *****************************************************************
warmup: WARNING: flash attention not supported by CUDA0, memory usage will increase
warmup: op params: 
warmup:    dst: type = f32, ne = [72 16 1024 1], nb = [4 288 4608 4718592]
warmup:   src0: type = f32, ne = [72 1024 16 1], nb = [4 4608 288 4718592]
warmup:   src1: type = f16, ne = [72 1024 16 1], nb = [2 144 147456 2359296]
warmup:   src2: type = f16, ne = [72 1024 16 1], nb = [2 144 147456 2359296]
warmup: please report this on github as an issue
warmup: *****************************************************************
alloc_compute_meta: warmup with image size = 512 x 512
alloc_compute_meta:      CUDA0 compute buffer size =   112.02 MiB
alloc_compute_meta:        CPU compute buffer size =    13.50 MiB
alloc_compute_meta: graph splits = 1, nodes = 907
warmup: flash attention is disabled
warmup: *****************************************************************
warmup: WARNING: the CLIP graph uses unsupported operators by the backend
warmup:          the performance will be suboptimal                      
warmup:          list of unsupported ops (backend=CUDA0):
warmup:         SOFT_MAX: type = f32, ne = [1024 1024 16 1]
warmup:             CONT: type = f32, ne = [1024 72 16 1]
warmup:          PERMUTE: type = f32, ne = [72 1024 16 1]
warmup:             ROPE: type = f32, ne = [72 16 1024 1]
warmup:             VIEW: type = f32, ne = [72 16 1024 1]
warmup:             VIEW: type = f32, ne = [72 16 1024 1]
warmup:          MUL_MAT: type = f32, ne = [3456 1024 1 1]
warmup:              MUL: type = f32, ne = [1152 1024 1 1]
warmup:              ADD: type = f32, ne = [1152 1024 1 1]
warmup:            UNARY: type = f32, ne = [4608 256 1 1]
warmup:              ADD: type = f32, ne = [4304 1024 1 1]
warmup:              ADD: type = f32, ne = [1152 1024 1 1]
warmup:             NORM: type = f32, ne = [1152 1024 1 1]
warmup:              ADD: type = f32, ne = [1152 1024 1 1]
warmup:             CONT: type = f32, ne = [1152 1024 1 1]
warmup:          MUL_MAT: type = f32, ne = [72 1024 16 1]
warmup:          MUL_MAT: type = f32, ne = [1024 1024 16 1]
warmup:             NORM: type = f32, ne = [1152 1024 1 1]
warmup:          PERMUTE: type = f32, ne = [72 1024 16 1]
warmup:             ROPE: type = f32, ne = [72 16 1024 1]
warmup:             VIEW: type = f32, ne = [72 16 1024 1]
warmup:              ADD: type = f32, ne = [3456 1024 1 1]
warmup:              ADD: type = f32, ne = [1152 1024 1 1]
warmup:             NORM: type = f32, ne = [1152 1024 1 1]
warmup:              ADD: type = f32, ne = [1152 1024 1 1]
warmup:             VIEW: type = f32, ne = [72 16 1024 1]
warmup:          MUL_MAT: type = f32, ne = [4608 256 1 1]
warmup: flash attention is disabled
warmup: please report this on github as an issue
warmup: ref: https://github.com/ggml-org/llama.cpp/pull/16837#issuecomment-3461676118
warmup: *****************************************************************
0.08.779.898 I srv    load_model: loaded multimodal model, '/home/dylan/gguf/mmproj-Qwen3-VL-32B-Instruct-bf16.gguf'
0.08.779.902 I srv          init: initializing slots, n_slots = 4
0.08.779.905 I slot         init: id  0 | task -1 | new slot, n_ctx = 8192
0.08.779.908 I slot         init: id  1 | task -1 | new slot, n_ctx = 8192
0.08.779.910 I slot         init: id  2 | task -1 | new slot, n_ctx = 8192
0.08.779.910 I slot         init: id  3 | task -1 | new slot, n_ctx = 8192
0.08.779.931 W srv          init: prompt cache is enabled, size limit: 51200 MiB
0.08.779.932 W srv          init: use `--cache-ram 0` to disable the prompt cache
0.08.779.932 W srv          init: for more info see https://github.com/ggml-org/llama.cpp/pull/16391
0.08.780.025 I srv          init: thinking = 0
0.08.780.027 I main: model loaded
0.08.780.072 I main: chat template, chat_template: {%- if tools %}
    {{- '<|im_start|>system\n' }}
    {%- if messages[0].role == 'system' %}
        {%- if messages[0].content is string %}
            {{- messages[0].content }}
        {%- else %}
            {%- for content in messages[0].content %}
                {%- if 'text' in content %}
                    {{- content.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {{- '\n\n' }}
    {%- endif %}
    {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
    {%- for tool in tools %}
        {{- "\n" }}
        {{- tool | tojson }}
    {%- endfor %}
    {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
{%- else %}
    {%- if messages[0].role == 'system' %}
        {{- '<|im_start|>system\n' }}
        {%- if messages[0].content is string %}
            {{- messages[0].content }}
        {%- else %}
            {%- for content in messages[0].content %}
                {%- if 'text' in content %}
                    {{- content.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {{- '<|im_end|>\n' }}
    {%- endif %}
{%- endif %}
{%- set image_count = namespace(value=0) %}
{%- set video_count = namespace(value=0) %}
{%- for message in messages %}
    {%- if message.role == "user" %}
        {{- '<|im_start|>' + message.role + '\n' }}
        {%- if message.content is string %}
            {{- message.content }}
        {%- else %}
            {%- for content in message.content %}
                {%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
                    {%- set image_count.value = image_count.value + 1 %}
                    {%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
                    <|vision_start|><|image_pad|><|vision_end|>
                {%- elif content.type == 'video' or 'video' in content %}
                    {%- set video_count.value = video_count.value + 1 %}
                    {%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
                    <|vision_start|><|video_pad|><|vision_end|>
                {%- elif 'text' in content %}
                    {{- content.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {{- '<|im_end|>\n' }}
    {%- elif message.role == "assistant" %}
        {{- '<|im_start|>' + message.role + '\n' }}
        {%- if message.content is string %}
            {{- message.content }}
        {%- else %}
            {%- for content_item in message.content %}
                {%- if 'text' in content_item %}
                    {{- content_item.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {%- if message.tool_calls %}
            {%- for tool_call in message.tool_calls %}
                {%- if (loop.first and message.content) or (not loop.first) %}
                    {{- '\n' }}
                {%- endif %}
                {%- if tool_call.function %}
                    {%- set tool_call = tool_call.function %}
                {%- endif %}
                {{- '<tool_call>\n{"name": "' }}
                {{- tool_call.name }}
                {{- '", "arguments": ' }}
                {%- if tool_call.arguments is string %}
                    {{- tool_call.arguments }}
                {%- else %}
                    {{- tool_call.arguments | tojson }}
                {%- endif %}
                {{- '}\n</tool_call>' }}
            {%- endfor %}
        {%- endif %}
        {{- '<|im_end|>\n' }}
    {%- elif message.role == "tool" %}
        {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
            {{- '<|im_start|>user' }}
        {%- endif %}
        {{- '\n<tool_response>\n' }}
        {%- if message.content is string %}
            {{- message.content }}
        {%- else %}
            {%- for content in message.content %}
                {%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
                    {%- set image_count.value = image_count.value + 1 %}
                    {%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
                    <|vision_start|><|image_pad|><|vision_end|>
                {%- elif content.type == 'video' or 'video' in content %}
                    {%- set video_count.value = video_count.value + 1 %}
                    {%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
                    <|vision_start|><|video_pad|><|vision_end|>
                {%- elif 'text' in content %}
                    {{- content.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {{- '\n</tool_response>' }}
        {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
            {{- '<|im_end|>\n' }}
        {%- endif %}
    {%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
    {{- '<|im_start|>assistant\n' }}
{%- endif %}
, example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
0.08.780.074 I main: server is listening on http://0.0.0.0:12800 - starting the main loop
0.08.780.075 I srv  update_slots: all slots are idle

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions