-
Notifications
You must be signed in to change notification settings - Fork 13.5k
Description
What happened?
The generation speed of llama-server has significantly decreased since b3681, and this issue persists in the latest b3779 without improvement.
For the same task and parameters "-ngl 99 -fa -c 2048," the generation speeds are:
b3680: 60 t/s
b3681: 40 t/s
b3779: 40 t/s
Name and Version
llama-server -v
build: 3779 (7be099f) with MSVC 19.29.30154.0 for x64
system info: n_threads = 10, n_threads_batch = 10, total_threads = 16
system_info: n_threads = 10 (n_threads_batch = 10) / 16 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
main: HTTP server is listening, hostname: 127.0.0.1, port: 8080, http threads: 15
What operating system are you seeing the problem on?
No response
Relevant log output
# b3680
INFO [ main] build info | tid="19948" timestamp=1726628445 build=3680 commit="947538ac"
INFO [ main] system info | tid="19948" timestamp=1726628445 n_threads=10 n_threads_batch=10 total_threads=16 system_info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | "
INFO [ main] HTTP server is listening | tid="19948" timestamp=1726628445 hostname="127.0.0.1" port="8080" n_threads_http="15"
INFO [ main] loading model | tid="19948" timestamp=1726628445 hostname="127.0.0.1" port="8080" n_threads_http="15"
llama_model_loader: loaded meta data with 36 key-value pairs and 339 tensors from E:\ai\models\qwen2-7b-instruct-q5_k_m-i_wikicn.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen2 7B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Qwen2
llama_model_loader: - kv 5: general.size_label str = 7B
llama_model_loader: - kv 6: general.license str = apache-2.0
llama_model_loader: - kv 7: general.base_model.count u32 = 1
llama_model_loader: - kv 8: general.base_model.0.name str = Qwen2 7B
llama_model_loader: - kv 9: general.base_model.0.organization str = Qwen
llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen2-7B
llama_model_loader: - kv 11: general.tags arr[str,2] = ["chat", "text-generation"]
llama_model_loader: - kv 12: general.languages arr[str,1] = ["en"]
llama_model_loader: - kv 13: qwen2.block_count u32 = 28
llama_model_loader: - kv 14: qwen2.context_length u32 = 32768
llama_model_loader: - kv 15: qwen2.embedding_length u32 = 3584
llama_model_loader: - kv 16: qwen2.feed_forward_length u32 = 18944
llama_model_loader: - kv 17: qwen2.attention.head_count u32 = 28
llama_model_loader: - kv 18: qwen2.attention.head_count_kv u32 = 4
llama_model_loader: - kv 19: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 20: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 21: general.file_type u32 = 17
llama_model_loader: - kv 22: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 23: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 24: tokenizer.ggml.tokens arr[str,152064] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 25: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 26: tokenizer.ggml.merges arr[str,151387] = ["臓 臓", "臓臓 臓臓", "i n", "臓 t",...
llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 28: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 29: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 30: tokenizer.chat_template str = {% for message in messages %}{% if lo...
llama_model_loader: - kv 31: general.quantization_version u32 = 2
llama_model_loader: - kv 32: quantize.imatrix.file str = llama.cpp/imatrix.dat
llama_model_loader: - kv 33: quantize.imatrix.dataset str = /tmp/gradio/8869463bfcb11aaa5cc03db92...
llama_model_loader: - kv 34: quantize.imatrix.entries_count i32 = 196
llama_model_loader: - kv 35: quantize.imatrix.chunks_count i32 = 50
llama_model_loader: - type f32: 141 tensors
llama_model_loader: - type q5_K: 169 tensors
llama_model_loader: - type q6_K: 29 tensors
llm_load_vocab: special tokens cache size = 3
llm_load_vocab: token to piece cache size = 0.9308 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = qwen2
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 152064
llm_load_print_meta: n_merges = 151387
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 32768
llm_load_print_meta: n_embd = 3584
llm_load_print_meta: n_layer = 28
llm_load_print_meta: n_head = 28
llm_load_print_meta: n_head_kv = 4
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 7
llm_load_print_meta: n_embd_k_gqa = 512
llm_load_print_meta: n_embd_v_gqa = 512
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 18944
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 32768
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = ?B
llm_load_print_meta: model ftype = Q5_K - Medium
llm_load_print_meta: model params = 7.62 B
llm_load_print_meta: model size = 5.07 GiB (5.71 BPW)
llm_load_print_meta: general.name = Qwen2 7B Instruct
llm_load_print_meta: BOS token = 151643 '<|endoftext|>'
llm_load_print_meta: EOS token = 151645 '<|im_end|>'
llm_load_print_meta: PAD token = 151643 '<|endoftext|>'
llm_load_print_meta: LF token = 148848 '脛默'
llm_load_print_meta: EOT token = 151645 '<|im_end|>'
llm_load_print_meta: max token length = 256
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 3060 Ti, compute capability 8.6, VMM: yes
llm_load_tensors: ggml ctx size = 0.30 MiB
llm_load_tensors: offloading 28 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 29/29 layers to GPU
llm_load_tensors: CPU buffer size = 357.33 MiB
llm_load_tensors: CUDA0 buffer size = 4829.59 MiB
.......................................................................................
llama_new_context_with_model: n_ctx = 2048
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: freq_base = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA0 KV buffer size = 112.00 MiB
llama_new_context_with_model: KV self size = 112.00 MiB, K (f16): 56.00 MiB, V (f16): 56.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 1.16 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 304.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 11.01 MiB
llama_new_context_with_model: graph nodes = 875
llama_new_context_with_model: graph splits = 2
INFO [ init] initializing slots | tid="19948" timestamp=1726628447 n_slots=1
INFO [ init] new slot | tid="19948" timestamp=1726628447 id_slot=0 n_ctx_slot=2048
INFO [ main] model loaded | tid="19948" timestamp=1726628447
INFO [ main] chat template | tid="19948" timestamp=1726628447 chat_example="<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi there<|im_end|>\n<|im_start|>user\nHow are you?<|im_end|>\n<|im_start|>assistant\n" built_in=true
INFO [ update_slots] all slots are idle | tid="19948" timestamp=1726628447
INFO [ launch_slot_with_task] slot is processing task | tid="19948" timestamp=1726628470 id_slot=0 id_task=0
INFO [ update_slots] kv cache rm [p0, end) | tid="19948" timestamp=1726628470 id_slot=0 id_task=0 p0=0
INFO [ update_slots] slot context shift | tid="19948" timestamp=1726628481 id_slot=0 id_task=0 n_keep=0 n_left=2047 n_discard=1023 n_ctx=2048 n_past=2047 n_system_tokens=0 n_cache_tokens=0
INFO [ release] slot released | tid="19948" timestamp=1726628484 id_slot=0 id_task=0 n_past=1204 truncated=true
INFO [ print_timings] prompt eval time = 826.23 ms / 1373 tokens ( 0.60 ms per token, 1661.77 tokens per second) | tid="19948" timestamp=1726628484 id_slot=0 id_task=0 t_prompt_processing=826.226 n_prompt_tokens_processed=1373 t_token=0.6017669337217771 n_tokens_second=1661.7729289564843
INFO [ print_timings] generation eval time = 13805.91 ms / 855 runs ( 16.15 ms per token, 61.93 tokens per second) | tid="19948" timestamp=1726628484 id_slot=0 id_task=0 t_token_generation=13805.908 n_decoded=855 t_token=16.14726081871345 n_tokens_second=61.93000851519509
INFO [ print_timings] total time = 14632.13 ms | tid="19948" timestamp=1726628484 id_slot=0 id_task=0 t_prompt_processing=826.226 t_token_generation=13805.908 t_total=14632.134
INFO [ launch_slot_with_task] slot is processing task | tid="19948" timestamp=1726628484 id_slot=0 id_task=1
INFO [ log_server_request] request | tid="7736" timestamp=1726628484 remote_addr="127.0.0.1" remote_port=2469 status=200 method="POST" path="/v1/chat/completions" params={}
INFO [ update_slots] kv cache rm [p0, end) | tid="19948" timestamp=1726628484 id_slot=0 id_task=1 p0=0
INFO [ release] slot released | tid="19948" timestamp=1726628486 id_slot=0 id_task=1 n_past=1303 truncated=false
INFO [ print_timings] prompt eval time = 505.69 ms / 1248 tokens ( 0.41 ms per token, 2467.89 tokens per second) | tid="19948" timestamp=1726628486 id_slot=0 id_task=1 t_prompt_processing=505.695 n_prompt_tokens_processed=1248 t_token=0.4052043269230769 n_tokens_second=2467.890724646279
INFO [ print_timings] generation eval time = 870.15 ms / 56 runs ( 15.54 ms per token, 64.36 tokens per second) | tid="19948" timestamp=1726628486 id_slot=0 id_task=1 t_token_generation=870.155 n_decoded=56 t_token=15.538482142857143 n_tokens_second=64.35635030540536
INFO [ print_timings] total time = 1375.85 ms | tid="19948" timestamp=1726628486 id_slot=0 id_task=1 t_prompt_processing=505.695 t_token_generation=870.155 t_total=1375.85
INFO [ update_slots] all slots are idle | tid="19948" timestamp=1726628486
INFO [ log_server_request] request | tid="13284" timestamp=1726628486 remote_addr="127.0.0.1" remote_port=2468 status=200 method="POST" path="/v1/chat/completions" params={}
# b3681
INFO [ main] build info | tid="18284" timestamp=1726628566 build=3681 commit="df270ef7"
INFO [ main] system info | tid="18284" timestamp=1726628566 n_threads=10 n_threads_batch=10 total_threads=16 system_info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | "
INFO [ main] HTTP server is listening | tid="18284" timestamp=1726628566 hostname="127.0.0.1" port="8080" n_threads_http="15"
INFO [ main] loading model | tid="18284" timestamp=1726628566 hostname="127.0.0.1" port="8080" n_threads_http="15"
llama_model_loader: loaded meta data with 36 key-value pairs and 339 tensors from E:\ai\models\qwen2-7b-instruct-q5_k_m-i_wikicn.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen2 7B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Qwen2
llama_model_loader: - kv 5: general.size_label str = 7B
llama_model_loader: - kv 6: general.license str = apache-2.0
llama_model_loader: - kv 7: general.base_model.count u32 = 1
llama_model_loader: - kv 8: general.base_model.0.name str = Qwen2 7B
llama_model_loader: - kv 9: general.base_model.0.organization str = Qwen
llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen2-7B
llama_model_loader: - kv 11: general.tags arr[str,2] = ["chat", "text-generation"]
llama_model_loader: - kv 12: general.languages arr[str,1] = ["en"]
llama_model_loader: - kv 13: qwen2.block_count u32 = 28
llama_model_loader: - kv 14: qwen2.context_length u32 = 32768
llama_model_loader: - kv 15: qwen2.embedding_length u32 = 3584
llama_model_loader: - kv 16: qwen2.feed_forward_length u32 = 18944
llama_model_loader: - kv 17: qwen2.attention.head_count u32 = 28
llama_model_loader: - kv 18: qwen2.attention.head_count_kv u32 = 4
llama_model_loader: - kv 19: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 20: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 21: general.file_type u32 = 17
llama_model_loader: - kv 22: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 23: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 24: tokenizer.ggml.tokens arr[str,152064] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 25: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 26: tokenizer.ggml.merges arr[str,151387] = ["臓 臓", "臓臓 臓臓", "i n", "臓 t",...
llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 28: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 29: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 30: tokenizer.chat_template str = {% for message in messages %}{% if lo...
llama_model_loader: - kv 31: general.quantization_version u32 = 2
llama_model_loader: - kv 32: quantize.imatrix.file str = llama.cpp/imatrix.dat
llama_model_loader: - kv 33: quantize.imatrix.dataset str = /tmp/gradio/8869463bfcb11aaa5cc03db92...
llama_model_loader: - kv 34: quantize.imatrix.entries_count i32 = 196
llama_model_loader: - kv 35: quantize.imatrix.chunks_count i32 = 50
llama_model_loader: - type f32: 141 tensors
llama_model_loader: - type q5_K: 169 tensors
llama_model_loader: - type q6_K: 29 tensors
llm_load_vocab: special tokens cache size = 3
llm_load_vocab: token to piece cache size = 0.9308 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = qwen2
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 152064
llm_load_print_meta: n_merges = 151387
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 32768
llm_load_print_meta: n_embd = 3584
llm_load_print_meta: n_layer = 28
llm_load_print_meta: n_head = 28
llm_load_print_meta: n_head_kv = 4
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 7
llm_load_print_meta: n_embd_k_gqa = 512
llm_load_print_meta: n_embd_v_gqa = 512
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 18944
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 32768
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = ?B
llm_load_print_meta: model ftype = Q5_K - Medium
llm_load_print_meta: model params = 7.62 B
llm_load_print_meta: model size = 5.07 GiB (5.71 BPW)
llm_load_print_meta: general.name = Qwen2 7B Instruct
llm_load_print_meta: BOS token = 151643 '<|endoftext|>'
llm_load_print_meta: EOS token = 151645 '<|im_end|>'
llm_load_print_meta: PAD token = 151643 '<|endoftext|>'
llm_load_print_meta: LF token = 148848 '脛默'
llm_load_print_meta: EOT token = 151645 '<|im_end|>'
llm_load_print_meta: max token length = 256
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 3060 Ti, compute capability 8.6, VMM: yes
llm_load_tensors: ggml ctx size = 0.30 MiB
llm_load_tensors: offloading 28 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 29/29 layers to GPU
llm_load_tensors: CPU buffer size = 357.33 MiB
llm_load_tensors: CUDA0 buffer size = 4829.59 MiB
.......................................................................................
llama_new_context_with_model: n_ctx = 2048
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: freq_base = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA0 KV buffer size = 112.00 MiB
llama_new_context_with_model: KV self size = 112.00 MiB, K (f16): 56.00 MiB, V (f16): 56.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 1.16 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 304.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 11.01 MiB
llama_new_context_with_model: graph nodes = 875
llama_new_context_with_model: graph splits = 2
INFO [ init] initializing slots | tid="18284" timestamp=1726628568 n_slots=1
INFO [ init] new slot | tid="18284" timestamp=1726628568 id_slot=0 n_ctx_slot=2048
INFO [ main] model loaded | tid="18284" timestamp=1726628568
INFO [ main] chat template | tid="18284" timestamp=1726628568 chat_example="<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi there<|im_end|>\n<|im_start|>user\nHow are you?<|im_end|>\n<|im_start|>assistant\n" built_in=true
INFO [ update_slots] all slots are idle | tid="18284" timestamp=1726628568
INFO [ launch_slot_with_task] slot is processing task | tid="18284" timestamp=1726628585 id_slot=0 id_task=0
INFO [ update_slots] kv cache rm [p0, end) | tid="18284" timestamp=1726628585 id_slot=0 id_task=0 p0=0
INFO [ update_slots] slot context shift | tid="18284" timestamp=1726628604 id_slot=0 id_task=0 n_keep=0 n_left=2047 n_discard=1023 n_ctx=2048 n_past=2047 n_system_tokens=0 n_cache_tokens=0
INFO [ release] slot released | tid="18284" timestamp=1726628608 id_slot=0 id_task=0 n_past=1204 truncated=true
INFO [ print_timings] prompt eval time = 965.25 ms / 1373 tokens ( 0.70 ms per token, 1422.43 tokens per second) | tid="18284" timestamp=1726628608 id_slot=0 id_task=0 t_prompt_processing=965.253 n_prompt_tokens_processed=1373 t_token=0.7030247632920612 n_tokens_second=1422.4250015280968
INFO [ print_timings] generation eval time = 22429.05 ms / 855 runs ( 26.23 ms per token, 38.12 tokens per second) | tid="18284" timestamp=1726628608 id_slot=0 id_task=0 t_token_generation=22429.053 n_decoded=855 t_token=26.232810526315788 n_tokens_second=38.120200616584214
INFO [ print_timings] total time = 23394.31 ms | tid="18284" timestamp=1726628608 id_slot=0 id_task=0 t_prompt_processing=965.253 t_token_generation=22429.053 t_total=23394.306
INFO [ launch_slot_with_task] slot is processing task | tid="18284" timestamp=1726628608 id_slot=0 id_task=2
INFO [ log_server_request] request | tid="17004" timestamp=1726628608 remote_addr="127.0.0.1" remote_port=2672 status=200 method="POST" path="/v1/chat/completions" params={}
INFO [ update_slots] kv cache rm [p0, end) | tid="18284" timestamp=1726628608 id_slot=0 id_task=2 p0=0
INFO [ release] slot released | tid="18284" timestamp=1726628610 id_slot=0 id_task=2 n_past=1303 truncated=false
INFO [ print_timings] prompt eval time = 520.49 ms / 1248 tokens ( 0.42 ms per token, 2397.76 tokens per second) | tid="18284" timestamp=1726628610 id_slot=0 id_task=2 t_prompt_processing=520.485 n_prompt_tokens_processed=1248 t_token=0.4170552884615385 n_tokens_second=2397.7636243119396
INFO [ print_timings] generation eval time = 1423.78 ms / 56 runs ( 25.42 ms per token, 39.33 tokens per second) | tid="18284" timestamp=1726628610 id_slot=0 id_task=2 t_token_generation=1423.777 n_decoded=56 t_token=25.424589285714287 n_tokens_second=39.3320021323564
INFO [ print_timings] total time = 1944.26 ms | tid="18284" timestamp=1726628610 id_slot=0 id_task=2 t_prompt_processing=520.485 t_token_generation=1423.777 t_total=1944.2620000000002
INFO [ update_slots] all slots are idle | tid="18284" timestamp=1726628610
INFO [ log_server_request] request | tid="20504" timestamp=1726628610 remote_addr="127.0.0.1" remote_port=2673 status=200 method="POST" path="/v1/chat/completions" params={}
# b3779
build: 3779 (7be099fa) with MSVC 19.29.30154.0 for x64
system info: n_threads = 10, n_threads_batch = 10, total_threads = 16
system_info: n_threads = 10 (n_threads_batch = 10) / 16 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
main: HTTP server is listening, hostname: 127.0.0.1, port: 8080, http threads: 15
main: loading model
llama_model_loader: loaded meta data with 36 key-value pairs and 339 tensors from E:\ai\models\qwen2-7b-instruct-q5_k_m-i_wikicn.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen2 7B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Qwen2
llama_model_loader: - kv 5: general.size_label str = 7B
llama_model_loader: - kv 6: general.license str = apache-2.0
llama_model_loader: - kv 7: general.base_model.count u32 = 1
llama_model_loader: - kv 8: general.base_model.0.name str = Qwen2 7B
llama_model_loader: - kv 9: general.base_model.0.organization str = Qwen
llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen2-7B
llama_model_loader: - kv 11: general.tags arr[str,2] = ["chat", "text-generation"]
llama_model_loader: - kv 12: general.languages arr[str,1] = ["en"]
llama_model_loader: - kv 13: qwen2.block_count u32 = 28
llama_model_loader: - kv 14: qwen2.context_length u32 = 32768
llama_model_loader: - kv 15: qwen2.embedding_length u32 = 3584
llama_model_loader: - kv 16: qwen2.feed_forward_length u32 = 18944
llama_model_loader: - kv 17: qwen2.attention.head_count u32 = 28
llama_model_loader: - kv 18: qwen2.attention.head_count_kv u32 = 4
llama_model_loader: - kv 19: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 20: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 21: general.file_type u32 = 17
llama_model_loader: - kv 22: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 23: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 24: tokenizer.ggml.tokens arr[str,152064] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 25: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 26: tokenizer.ggml.merges arr[str,151387] = ["臓 臓", "臓臓 臓臓", "i n", "臓 t",...
llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 28: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 29: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 30: tokenizer.chat_template str = {% for message in messages %}{% if lo...
llama_model_loader: - kv 31: general.quantization_version u32 = 2
llama_model_loader: - kv 32: quantize.imatrix.file str = llama.cpp/imatrix.dat
llama_model_loader: - kv 33: quantize.imatrix.dataset str = /tmp/gradio/8869463bfcb11aaa5cc03db92...
llama_model_loader: - kv 34: quantize.imatrix.entries_count i32 = 196
llama_model_loader: - kv 35: quantize.imatrix.chunks_count i32 = 50
llama_model_loader: - type f32: 141 tensors
llama_model_loader: - type q5_K: 169 tensors
llama_model_loader: - type q6_K: 29 tensors
llm_load_vocab: special tokens cache size = 3
llm_load_vocab: token to piece cache size = 0.9308 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = qwen2
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 152064
llm_load_print_meta: n_merges = 151387
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 32768
llm_load_print_meta: n_embd = 3584
llm_load_print_meta: n_layer = 28
llm_load_print_meta: n_head = 28
llm_load_print_meta: n_head_kv = 4
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 7
llm_load_print_meta: n_embd_k_gqa = 512
llm_load_print_meta: n_embd_v_gqa = 512
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 18944
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 32768
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = ?B
llm_load_print_meta: model ftype = Q5_K - Medium
llm_load_print_meta: model params = 7.62 B
llm_load_print_meta: model size = 5.07 GiB (5.71 BPW)
llm_load_print_meta: general.name = Qwen2 7B Instruct
llm_load_print_meta: BOS token = 151643 '<|endoftext|>'
llm_load_print_meta: EOS token = 151645 '<|im_end|>'
llm_load_print_meta: PAD token = 151643 '<|endoftext|>'
llm_load_print_meta: LF token = 148848 '脛默'
llm_load_print_meta: EOT token = 151645 '<|im_end|>'
llm_load_print_meta: max token length = 256
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 3060 Ti, compute capability 8.6, VMM: yes
llm_load_tensors: ggml ctx size = 0.30 MiB
llm_load_tensors: offloading 28 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 29/29 layers to GPU
llm_load_tensors: CPU buffer size = 357.33 MiB
llm_load_tensors: CUDA0 buffer size = 4829.59 MiB
.......................................................................................
llama_new_context_with_model: n_ctx = 2048
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: freq_base = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA0 KV buffer size = 112.00 MiB
llama_new_context_with_model: KV self size = 112.00 MiB, K (f16): 56.00 MiB, V (f16): 56.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 1.16 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 304.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 11.01 MiB
llama_new_context_with_model: graph nodes = 875
llama_new_context_with_model: graph splits = 2
llama_init_from_gpt_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv init: initializing slots, n_slots = 1
slot init: id 0 | task -1 | new slot n_ctx_slot = 2048
main: model loaded
main: chat template, built_in: 1, chat_example: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'main: server is listening on 127.0.0.1:8080 - starting the main loop
srv update_slots: all slots are idle
slot launch_slot_: id 0 | task 0 | processing task
slot update_slots: id 0 | task 0 | tokenizing prompt, len = 1
slot update_slots: id 0 | task 0 | prompt tokenized, n_ctx_slot = 2048, n_keep = 0, n_prompt_tokens = 1248
slot update_slots: id 0 | task 0 | kv cache rm [0, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 1248, n_tokens = 1248, progress = 1.000000
slot update_slots: id 0 | task 0 | prompt done, n_past = 1248, n_tokens = 1248
slot release: id 0 | task 0 | stop processing: n_past = 1303, truncated = 0
slot print_timing: id 0 | task 0 |
prompt eval time = 783.29 ms / 1248 tokens ( 0.63 ms per token, 1593.27 tokens per second)
eval time = 1409.38 ms / 56 tokens ( 25.17 ms per token, 39.73 tokens per second)
total time = 2192.67 ms / 1304 tokens
slot launch_slot_: id 0 | task 2 | processing task
slot update_slots: id 0 | task 2 | tokenizing prompt, len = 1
request: POST /v1/chat/completions 127.0.0.1 200
slot update_slots: id 0 | task 2 | prompt tokenized, n_ctx_slot = 2048, n_keep = 0, n_prompt_tokens = 1373
slot update_slots: id 0 | task 2 | kv cache rm [0, end)
slot update_slots: id 0 | task 2 | prompt processing progress, n_past = 1373, n_tokens = 1373, progress = 1.000000
slot update_slots: id 0 | task 2 | prompt done, n_past = 1373, n_tokens = 1373
slot update_slots: id 0 | task 2 | slot context shift, n_keep = 0, n_left = 2047, n_discard = 1023
slot release: id 0 | task 2 | stop processing: n_past = 1204, truncated = 1
slot print_timing: id 0 | task 2 |
prompt eval time = 565.05 ms / 1373 tokens ( 0.41 ms per token, 2429.88 tokens per second)
eval time = 21562.66 ms / 855 tokens ( 25.22 ms per token, 39.65 tokens per second)
total time = 22127.71 ms / 2228 tokens
srv update_slots: all slots are idle
request: POST /v1/chat/completions 127.0.0.1 200