Skip to content

Bug: Segmentation fault when set --ctv to f32. #9969

@morgen52

Description

@morgen52

What happened?

Hi, there.

I have tried to use the -ctv option to improve the performance of the model. However, when I set the --ctv to f32, I got a segmentation fault without hints.

I am not sure if I am doing something wrong or if there is a bug in the code. I would appreciate it if you could help me with this issue.

  • The command I used for starting the server:
./llama.cpp-b3938/build_gpu/bin/llama-cli     -m ../models/Phi-3-mini-4k-instruct-q4.gguf     -n 256 -np 5  -ctv f32 -fa -p "what is the meaning of life" --no-warmup
  • The response I got:
...

system_info: n_threads = 6 (n_threads_batch = 6) / 16 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 

sampler seed: 4273919972
sampler params: 
        repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
        top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.800
        mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> top-k -> tail-free -> typical -> top-p -> min-p -> xtc -> temp-ext -> softmax -> dist 
generate: n_ctx = 4096, n_batch = 2048, n_predict = 256, n_keep = 1

 what is the meaning of life
 
Segmentation fault (core dumped)

Name and Version

./llama.cpp-b3938/build_gpu/bin/llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 3060, compute capability 8.6, VMM: yes
version: 7 (d9a33c5)
built with cc (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0 for x86_64-linux-gnu

What operating system are you seeing the problem on?

Linux

Relevant log output

ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 3060, compute capability 8.6, VMM: yes
build: 7 (d9a33c5) with cc (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0 for x86_64-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_load_model_from_file: using device CUDA0 (NVIDIA GeForce RTX 3060) - 10138 MiB free
llama_model_loader: loaded meta data with 24 key-value pairs and 195 tensors from ../models/Phi-3-mini-4k-instruct-q4.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = phi3
llama_model_loader: - kv   1:                               general.name str              = Phi3
llama_model_loader: - kv   2:                        phi3.context_length u32              = 4096
llama_model_loader: - kv   3:                      phi3.embedding_length u32              = 3072
llama_model_loader: - kv   4:                   phi3.feed_forward_length u32              = 8192
llama_model_loader: - kv   5:                           phi3.block_count u32              = 32
llama_model_loader: - kv   6:                  phi3.attention.head_count u32              = 32
llama_model_loader: - kv   7:               phi3.attention.head_count_kv u32              = 32
llama_model_loader: - kv   8:      phi3.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv   9:                  phi3.rope.dimension_count u32              = 96
llama_model_loader: - kv  10:                          general.file_type u32              = 15
llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  12:                         tokenizer.ggml.pre str              = default
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr[str,32064]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr[f32,32064]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr[i32,32064]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32              = 32000
llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  19:            tokenizer.ggml.padding_token_id u32              = 32000
llama_model_loader: - kv  20:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  21:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  22:                    tokenizer.chat_template str              = {{ bos_token }}{% for message in mess...
llama_model_loader: - kv  23:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q4_K:   81 tensors
llama_model_loader: - type q5_K:   32 tensors
llama_model_loader: - type q6_K:   17 tensors
llm_load_vocab: control-looking token:  32007 '<|end|>' was not control-type; this is probably a bug in the model. its type will be overridden
llm_load_vocab: control-looking token:  32000 '<|endoftext|>' was not control-type; this is probably a bug in the model. its type will be overridden
llm_load_vocab: special tokens cache size = 67
llm_load_vocab: token to piece cache size = 0.1690 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = phi3
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32064
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 4096
llm_load_print_meta: n_embd           = 3072
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_rot            = 96
llm_load_print_meta: n_swa            = 2047
llm_load_print_meta: n_embd_head_k    = 96
llm_load_print_meta: n_embd_head_v    = 96
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 3072
llm_load_print_meta: n_embd_v_gqa     = 3072
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 8192
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 2
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 4096
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 3B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 3.82 B
llm_load_print_meta: model size       = 2.23 GiB (5.01 BPW) 
llm_load_print_meta: general.name     = Phi3
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 32000 '<|endoftext|>'
llm_load_print_meta: EOT token        = 32007 '<|end|>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 32000 '<|endoftext|>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_print_meta: EOG token        = 32000 '<|endoftext|>'
llm_load_print_meta: EOG token        = 32007 '<|end|>'
llm_load_print_meta: max token length = 48
llm_load_tensors: ggml ctx size =    0.10 MiB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/33 layers to GPU
llm_load_tensors:        CPU buffer size =  2281.66 MiB
...........................................................................................
llama_new_context_with_model: n_ctx      = 4096
llama_new_context_with_model: n_batch    = 2048
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:  CUDA_Host KV buffer size =  2304.00 MiB
llama_new_context_with_model: KV self size  = 2304.00 MiB, K (f16):  768.00 MiB, V (f32): 1536.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.61 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =   145.68 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =    24.01 MiB
llama_new_context_with_model: graph nodes  = 1159
llama_new_context_with_model: graph splits = 230
main: llama threadpool init, n_threads = 6

system_info: n_threads = 6 (n_threads_batch = 6) / 16 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 

sampler seed: 4273919972
sampler params: 
        repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
        top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.800
        mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> top-k -> tail-free -> typical -> top-p -> min-p -> xtc -> temp-ext -> softmax -> dist 
generate: n_ctx = 4096, n_batch = 2048, n_predict = 256, n_keep = 1

 what is the meaning of life
 
Segmentation fault (core dumped)

Metadata

Metadata

Assignees

No one assigned

    Labels

    bug-unconfirmedmedium severityUsed to report medium severity bugs in llama.cpp (e.g. Malfunctioning Features but still useable)

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions