diff --git a/ggml/src/ggml-cann/aclnn_ops.cpp b/ggml/src/ggml-cann/aclnn_ops.cpp index c42871c575822..1f1d489ffa411 100755 --- a/ggml/src/ggml-cann/aclnn_ops.cpp +++ b/ggml/src/ggml-cann/aclnn_ops.cpp @@ -964,8 +964,8 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { } aclTensor* acl_gamma = get_f32_cache_acl_tensor( ctx, - &ctx.f32_one_cache, - ctx.f32_one_cache_element, + &ctx.rms_norm_one_tensor_cache.cache, + ctx.rms_norm_one_tensor_cache.size, src->ne, acl_gamma_nb, 1, // dims @@ -980,8 +980,8 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { } aclTensor* acl_rstd = get_f32_cache_acl_tensor( ctx, - &ctx.f32_zero_cache, - ctx.f32_zero_cache_element, + &ctx.rms_norm_zero_tensor_cache.cache, + ctx.rms_norm_zero_tensor_cache.size, src->ne, acl_rstd_nb, GGML_MAX_DIMS, @@ -2248,43 +2248,31 @@ static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx, * 5. Compute sin(θ), cos(θ) and optionally scale by attn_factor. * 6. Expand sin/cos values by repeat or repeat_interleave depending * on whether @param is_neox is enabled. - * 7. Store the computed values into persistent buffers - * (ctx.rope_sin_ptr / ctx.rope_cos_ptr). - * - * @param ctx The CANN backend context, holding memory pool, - * stream, and persistent buffers for rope init/cache. - * @param dst The destination ggml_tensor whose computation - * depends on the cached RoPE values (usually Qcur/Kcur). - * @param theta_scale Scalar exponent base for computing theta scale values. - * @param freq_scale Frequency scaling factor, applied to theta scale. - * @param attn_factor Attention scaling factor, applied to sin/cos. - * @param is_neox Whether to use Neox-style repeat strategy - * (dim expansion vs repeat_interleave). + * + * @param ctx The CANN backend context, holding memory pool, + * stream, and persistent buffers for rope init/cache. + * @param dst The destination ggml_tensor whose computation + * depends on the RoPE values (usually Qcur/Kcur). + * @param sin_tensor_buffer Pre-allocated buffer for storing repeated sin values. + * @param cos_tensor_buffer Pre-allocated buffer for storing repeated cos values. + * @param theta_scale Scalar exponent base for computing theta scale values. + * @param freq_scale Frequency scaling factor, applied to theta scale. + * @param attn_factor Attention scaling factor, applied to sin/cos. + * @param is_neox Whether to use Neox-style repeat strategy + * (dim expansion vs repeat_interleave). */ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, + void* sin_tensor_buffer, void* cos_tensor_buffer, float theta_scale, float freq_scale, float attn_factor, bool is_neox) { // int sin/cos cache, cache has different repeat method depond on // @param.is_neox - bool is_q = (std::strncmp(dst->name, "Qcur-", 5) == 0); - bool is_k = (std::strncmp(dst->name, "Kcur-", 5) == 0); - - // used for accuracy testing - bool is_attention = is_q || is_k; - - // just compute in first layer in attention - bool is_fisrt_layer = (std::strncmp(dst->name, "Qcur-0", GGML_MAX_NAME) == 0); - if(is_attention && !is_fisrt_layer) { - return; - } ggml_tensor* src0 = dst->src[0]; // input ggml_tensor* src1 = dst->src[1]; // position ggml_tensor* src2 = dst->src[2]; // freq_factors - GGML_TENSOR_BINARY_OP_LOCALS - - int64_t theta_scale_length = ne00 / 2; + int64_t theta_scale_length = src0->ne[0] / 2; int64_t theta_scale_ne[] = {theta_scale_length, 1, 1, 1}; size_t theta_scale_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t), theta_scale_length * sizeof(float_t)}; @@ -2302,21 +2290,32 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1]; } - // init theta scale, just one time - if(ctx.rope_init_ptr == nullptr || !is_attention) { - // theta_scale arange, [0,1,...,ne00/2 - 1] - if(ctx.rope_init_ptr != nullptr){ - ACL_CHECK(aclrtFree(ctx.rope_init_ptr)); + // theta_scale arange, [0,1,...,ne00/2 - 1] + aclTensor* acl_theta_scale_tensor = nullptr; + // cache theta scale + if (ctx.rope_cache.theta_scale_length != theta_scale_length || + // theta_scale and freq_scale should not change during the current token inference process, + // so we can directly use == here instead of comparing the absolute difference. + ctx.rope_cache.theta_scale != theta_scale || + ctx.rope_cache.freq_scale != freq_scale) { + + ctx.rope_cache.theta_scale_length = theta_scale_length; + ctx.rope_cache.theta_scale = theta_scale; + ctx.rope_cache.freq_scale = freq_scale; + + if (ctx.rope_cache.theta_scale_cache != nullptr) { + ACL_CHECK(aclrtFree(ctx.rope_cache.theta_scale_cache)); } - ACL_CHECK(aclrtMalloc(&ctx.rope_init_ptr, theta_scale_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST)); + ACL_CHECK(aclrtMalloc(&ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST)); - aclTensor* acl_theta_scale_tensor = - ggml_cann_create_tensor(ctx.rope_init_ptr, ACL_FLOAT, sizeof(float_t), + acl_theta_scale_tensor = + ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float_t), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); + float start = 0; float step = 1; - float stop = ne00 / 2; - float n_elements = ne00 / 2; + float stop = theta_scale_length; + float n_elements = theta_scale_length; aclnn_arange(ctx, acl_theta_scale_tensor, start, stop, step, n_elements); // power @@ -2328,35 +2327,30 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, if (freq_scale != 1) { aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true); } - - // freq_factors - if (src2) { - aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor( - src2->data, ggml_cann_type_mapping(src2->type), - ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); - aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor); - ggml_cann_release_resources(ctx, acl_freq_factors_tensor); - } - // release - ggml_cann_release_resources(ctx, acl_theta_scale_tensor,acl_theta_scale); + ggml_cann_release_resources(ctx, acl_theta_scale); + } else { + // use cache + acl_theta_scale_tensor = + ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float_t), + theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); } - // init sin_repeat && cos_repeat, one token just init in 0 layer - if(position_length > ctx.max_prompt_length) { - ctx.max_prompt_length = position_length; - int64_t repeat_theta_length = theta_scale_length * ctx.max_prompt_length * 2; - if(ctx.rope_sin_ptr != nullptr) { - ACL_CHECK(aclrtFree(ctx.rope_sin_ptr)); - ACL_CHECK(aclrtFree(ctx.rope_cos_ptr)); - } - ACL_CHECK(aclrtMalloc(&ctx.rope_sin_ptr, repeat_theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST)); - ACL_CHECK(aclrtMalloc(&ctx.rope_cos_ptr, repeat_theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST)); + ggml_cann_pool_alloc freq_fac_res_allocator(ctx.pool()); + // freq_factors + if (src2) { + freq_fac_res_allocator.alloc(theta_scale_length * sizeof(float_t)); + void* freq_fac_res_ptr = freq_fac_res_allocator.get(); + aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor( + src2->data, ggml_cann_type_mapping(src2->type), + ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); + aclTensor* acl_freq_fac_res_tensor = ggml_cann_create_tensor( + freq_fac_res_ptr, ACL_FLOAT, sizeof(float_t), + theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); + aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor, acl_freq_fac_res_tensor); + std::swap(acl_theta_scale_tensor, acl_freq_fac_res_tensor); + ggml_cann_release_resources(ctx, acl_freq_factors_tensor, acl_freq_fac_res_tensor); } - aclTensor* acl_theta_scale_tensor = - ggml_cann_create_tensor(ctx.rope_init_ptr, ACL_FLOAT, sizeof(float_t), - theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); - // position aclTensor* acl_position_tensor = ggml_cann_create_tensor( src1->data, ggml_cann_type_mapping(src1->type), @@ -2397,17 +2391,17 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, aclnn_muls(ctx, acl_cos_tensor, attn_factor, nullptr, true); } - int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1}; + int64_t sin_reshape_ne[4] = {src0->ne[0], 1, src0->ne[2], 1}; size_t sin_reshape_nb[GGML_MAX_DIMS]; sin_reshape_nb[0] = sizeof(float_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1]; } aclTensor* acl_sin_repeat_tensor = - ggml_cann_create_tensor(ctx.rope_sin_ptr, ACL_FLOAT, sizeof(float_t), + ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float_t), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); aclTensor* acl_cos_repeat_tensor = - ggml_cann_create_tensor(ctx.rope_cos_ptr, ACL_FLOAT, sizeof(float_t), + ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float_t), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); // repeat @@ -2449,6 +2443,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { // TODO: use ascendc // Only test with LLAMA model. ggml_tensor* src0 = dst->src[0]; // input + ggml_tensor* src1 = dst->src[1]; // param float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; @@ -2481,8 +2476,16 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; + // sin/cos tensor length. + int64_t repeat_theta_length = src0->ne[0] * src1->ne[0]; + ggml_cann_pool_alloc sin_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float)); + ggml_cann_pool_alloc cos_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float)); + void *sin_tensor_buffer = sin_tensor_allocator.get(); + void *cos_tensor_buffer = cos_tensor_allocator.get(); + // init ctx.rope_cos/rope_sin cache - aclnn_cache_init(ctx, dst, theta_scale, freq_scale, attn_factor, is_neox); + aclnn_cache_init(ctx, dst, sin_tensor_buffer, cos_tensor_buffer, + theta_scale, freq_scale, attn_factor, is_neox); int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1}; size_t sin_reshape_nb[GGML_MAX_DIMS]; @@ -2491,10 +2494,10 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1]; } aclTensor* acl_sin_reshape_tensor = - ggml_cann_create_tensor(ctx.rope_sin_ptr, ACL_FLOAT, sizeof(float_t), + ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float_t), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); aclTensor* acl_cos_reshape_tensor = - ggml_cann_create_tensor(ctx.rope_cos_ptr, ACL_FLOAT, sizeof(float_t), + ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float_t), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); aclTensor* acl_src = ggml_cann_create_tensor(src0); diff --git a/ggml/src/ggml-cann/common.h b/ggml/src/ggml-cann/common.h index 33794062f565d..6e0745d6202f8 100755 --- a/ggml/src/ggml-cann/common.h +++ b/ggml/src/ggml-cann/common.h @@ -360,6 +360,30 @@ struct ggml_cann_graph { }; #endif // USE_ACL_GRAPH +struct ggml_cann_rope_cache { + ~ggml_cann_rope_cache() { + if(theta_scale_cache != nullptr) { + ACL_CHECK(aclrtFree(theta_scale_cache)); + } + } + + void* theta_scale_cache = nullptr; + int64_t theta_scale_length = 0; + float theta_scale = 0.0f; + float freq_scale = 0.0f; +}; + +struct ggml_cann_tensor_cache { + ~ggml_cann_tensor_cache() { + if(cache != nullptr) { + ACL_CHECK(aclrtFree(cache)); + } + } + + void* cache = nullptr; + int64_t size = 0; +}; + /** * @brief Context for managing CANN backend operations. */ @@ -376,15 +400,11 @@ struct ggml_backend_cann_context { bool async_mode; bool support_set_rows; // Rope Cache - void* rope_init_ptr = nullptr; - void* rope_sin_ptr = nullptr; - void* rope_cos_ptr = nullptr; - int64_t max_prompt_length = 0; + ggml_cann_rope_cache rope_cache; // Constant Pool - void* f32_zero_cache = nullptr; - void* f32_one_cache = nullptr; - int64_t f32_zero_cache_element = 0; - int64_t f32_one_cache_element = 0; + ggml_cann_tensor_cache rms_norm_one_tensor_cache; + ggml_cann_tensor_cache rms_norm_zero_tensor_cache; + aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */ @@ -424,21 +444,6 @@ struct ggml_backend_cann_context { ACL_CHECK(aclrtDestroyStream(streams[i])); } } - if(rope_init_ptr != nullptr) { - ACL_CHECK(aclrtFree(rope_init_ptr)); - } - if(rope_sin_ptr != nullptr) { - ACL_CHECK(aclrtFree(rope_sin_ptr)); - } - if(rope_cos_ptr != nullptr) { - ACL_CHECK(aclrtFree(rope_cos_ptr)); - } - if(f32_zero_cache != nullptr) { - ACL_CHECK(aclrtFree(f32_zero_cache)); - } - if(f32_one_cache != nullptr) { - ACL_CHECK(aclrtFree(f32_one_cache)); - } } /** diff --git a/ggml/src/ggml-cann/ggml-cann.cpp b/ggml/src/ggml-cann/ggml-cann.cpp index 81215425618a3..cf450e7724ab7 100755 --- a/ggml/src/ggml-cann/ggml-cann.cpp +++ b/ggml/src/ggml-cann/ggml-cann.cpp @@ -2247,6 +2247,7 @@ static enum ggml_status ggml_backend_cann_graph_compute( (ggml_backend_cann_context*)backend->context; ggml_cann_set_device(cann_ctx->device); release_nz_workspace(); + #ifdef USE_ACL_GRAPH bool use_cann_graph = true; bool cann_graph_update_required = false;