diff --git a/common/chat.cpp b/common/chat.cpp
index 111b4a21b368c..89fbf479b8fa5 100644
--- a/common/chat.cpp
+++ b/common/chat.cpp
@@ -1758,6 +1758,13 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override= */ std::nullopt, extra_context);
data.format = COMMON_CHAT_FORMAT_HERMES_2_PRO;
+ auto supports_thinking = tmpl.source().find("") != std::string::npos;
+
+ // you should not be able to call enable_thinking if is not supported
+ if (!supports_thinking && extra_context["enable_thinking"]) {
+ extra_context["enable_thinking"] = false;
+ }
+
if (string_ends_with(data.prompt, "\n")) {
if (!extra_context["enable_thinking"]) {
data.prompt += "";
@@ -1820,9 +1827,31 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
tool_call_alts.push_back(
"( \"```\\n\" | \"```json\\n\" | \"```xml\\n\" ) space " + wrappable_tool_call + " space \"```\" space ");
auto tool_call = builder.add_rule("tool_call", string_join(tool_call_alts, " | "));
- builder.add_rule("root",
- std::string(data.thinking_forced_open ? "( \"\" space )? " : "") +
- (inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call));
+
+ builder.add_rule("thinking-start", "\"\"");
+ builder.add_rule("thinking-content", "( [^<] | \"<\" [^/] | \"\" [^t] | \"] )*");
+ builder.add_rule("thinking-end", "\"\" space");
+
+ //thinking grammar logic depending on if thinking_forced_open was to true (so already opened (and maybe closed)) and if thinking is even allowed
+ std::string thinking_grammar_logic = ""; // thinking tag was closed or not supported/wanted
+ if (extra_context["enable_thinking"]) {
+ data.grammar_triggers.push_back({
+ COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
+ data.thinking_forced_open ? "" : ""
+ });
+ if (data.thinking_forced_open) {
+ //thinking tag was already opened by used so we don't need to add it again
+ thinking_grammar_logic = "(thinking-content thinking-end) ";
+ }
+ else
+ {
+ thinking_grammar_logic = "(thinking-start thinking-content thinking-end) ";
+ }
+ }
+
+
+ builder.add_rule("root", thinking_grammar_logic + (inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call));
+
// Trigger on some common known "good bad" outputs (only from the start and with a json that's about a specific argument name to avoid false positives)
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
diff --git a/docs/function-calling.md b/docs/function-calling.md
index 37eacaf3100c1..67cf785c7a95d 100644
--- a/docs/function-calling.md
+++ b/docs/function-calling.md
@@ -21,6 +21,8 @@ Function calling is supported for all models (see https://github.com/ggml-org/ll
- Use `--chat-template-file` to override the template when appropriate (see examples below)
- Generic support may consume more tokens and be less efficient than a model's native format.
+- Multiple/parallel tool calling is supported on some models but disabled by default, enable it by passing `"parallel_tool_calls": true` in the completion endpoint payload.
+
Show some common templates and which format handler they use
diff --git a/ggml/src/ggml-cpu/ggml-cpu-impl.h b/ggml/src/ggml-cpu/ggml-cpu-impl.h
index 1f6844e16cd34..e08c30a348aa1 100644
--- a/ggml/src/ggml-cpu/ggml-cpu-impl.h
+++ b/ggml/src/ggml-cpu/ggml-cpu-impl.h
@@ -489,7 +489,7 @@ inline static int16x8_t vec_padd_s16(int16x8_t a, int16x8_t b) {
/**
* @see https://github.com/ggml-org/llama.cpp/pull/14037
*/
-inline float vec_hsum(float32x4_t v) {
+inline static float vec_hsum(float32x4_t v) {
float32x4_t v_temp = v + vec_reve(v);
return v_temp[0] + v_temp[1];
}
diff --git a/ggml/src/ggml-cuda/conv2d.cu b/ggml/src/ggml-cuda/conv2d.cu
new file mode 100644
index 0000000000000..cf878d1fd18e5
--- /dev/null
+++ b/ggml/src/ggml-cuda/conv2d.cu
@@ -0,0 +1,171 @@
+#include "conv2d.cuh"
+
+struct conv_params {
+ const int64_t IW, IH;
+ const int64_t OW, OH;
+ const int64_t KW, KH;
+ const int64_t ST_X, ST_Y;
+ const int64_t PD_X, PD_Y;
+ const int64_t DL_X, DL_Y;
+ const int64_t IC, OC;
+ const int64_t B;
+ const int64_t TOTAL;
+};
+
+struct kernel_bounds {
+ int64_t y_min, y_max;
+ int64_t x_min, x_max;
+};
+
+__device__ __forceinline__ int64_t max64(int64_t a, int64_t b) {
+ return (a > b) ? a : b;
+}
+
+__device__ __forceinline__ int64_t min64(int64_t a, int64_t b) {
+ return (a < b) ? a : b;
+}
+
+__device__ __forceinline__ kernel_bounds calculate_kernel_bounds(int64_t out_x, int64_t out_y, const conv_params & P) {
+ kernel_bounds bounds;
+ bounds.y_min = max64(0, (P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y);
+ bounds.y_max = min64(P.KH, (P.IH + P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y);
+ bounds.x_min = max64(0, (P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X);
+ bounds.x_max = min64(P.KW, (P.IW + P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X);
+ return bounds;
+}
+
+__device__ __forceinline__ int calculate_input_coord(int64_t out_coord,
+ int64_t kern_coord,
+ int64_t stride,
+ int64_t dilation,
+ int64_t padding) {
+ return out_coord * stride + kern_coord * dilation - padding;
+}
+
+struct whcn_layout {
+ __device__ static int64_t input_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) {
+ return n * (P.IC * P.IW * P.IH) + c * P.IW * P.IH + y * P.IW + x;
+ }
+
+ __device__ static int64_t kernel_index(int64_t c_out, int64_t c_in, int64_t ky, int64_t kx, const conv_params & P) {
+ return c_out * (P.IC * P.KH * P.KW) + c_in * (P.KH * P.KW) + ky * P.KW + kx;
+ }
+
+ __device__ static int64_t output_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) {
+ return n * (P.OC * P.OW * P.OH) + c * P.OW * P.OH + y * P.OW + x;
+ }
+
+ __device__ static void unpack_indices(int64_t global_idx,
+ const conv_params & P,
+ int64_t & n,
+ int64_t & c,
+ int64_t & out_y,
+ int64_t & out_x) {
+ out_x = global_idx % P.OW;
+ out_y = (global_idx / P.OW) % P.OH;
+ c = (global_idx / (P.OW * P.OH)) % P.OC;
+ n = global_idx / (P.OW * P.OH * P.OC);
+ }
+};
+
+template
+static __global__ void conv2d_kernel(const float * __restrict__ input,
+ const T * __restrict__ kernel,
+ float * __restrict__ output,
+ const conv_params P) {
+ const int64_t global_idx = blockIdx.x * blockDim.x + threadIdx.x;
+
+ if (global_idx >= P.TOTAL) {
+ return;
+ }
+
+ int64_t n, c_out, out_y, out_x;
+ Layout::unpack_indices(global_idx, P, n, c_out, out_y, out_x);
+
+ T acc = 0;
+
+ for (int64_t c_in = 0; c_in < P.IC; ++c_in) {
+ kernel_bounds bounds = calculate_kernel_bounds(out_x, out_y, P);
+
+ for (int64_t ky = bounds.y_min; ky < bounds.y_max; ++ky) {
+ const int64_t in_y = calculate_input_coord(out_y, ky, P.ST_Y, P.DL_Y, P.PD_Y);
+
+ for (int64_t kx = bounds.x_min; kx < bounds.x_max; ++kx) {
+ const int64_t in_x = calculate_input_coord(out_x, kx, P.ST_X, P.DL_X, P.PD_X);
+
+ T input_val;
+ if (std::is_same::value) {
+ input_val = __float2half(input[Layout::input_index(n, c_in, in_y, in_x, P)]);
+ } else {
+ input_val = input[Layout::input_index(n, c_in, in_y, in_x, P)];
+ }
+
+ T kernel_val = kernel[Layout::kernel_index(c_out, c_in, ky, kx, P)];
+ acc += (input_val * kernel_val);
+ }
+ }
+ }
+
+ // [N, OC, OH, OW]
+ output[Layout::output_index(n, c_out, out_y, out_x, P)] = (float) acc;
+}
+
+template
+static void conv2d_cuda(const float * X_D, const T * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
+ const int blocks = (P.TOTAL + CUDA_CONV2D_BLOCK_SIZE - 1) / CUDA_CONV2D_BLOCK_SIZE;
+ conv2d_kernel<<>>(X_D, K_D, Y_D, P);
+}
+
+static void conv2d_cuda_f16(const float * X_D, const half * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
+ conv2d_cuda(X_D, K_D, Y_D, P, st);
+}
+
+static void conv2d_cuda_f32(const float * X_D, const float * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
+ conv2d_cuda(X_D, K_D, Y_D, P, st);
+}
+
+void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * kernel = dst->src[0];
+ const ggml_tensor * input = dst->src[1];
+ float * K_D = (float *) kernel->data;
+ const float * X_D = (const float *) input->data;
+ float * Y_D = (float *) dst->data;
+
+ GGML_ASSERT(ggml_is_contiguous(kernel));
+ GGML_ASSERT(kernel->type == GGML_TYPE_F16 || kernel->type == GGML_TYPE_F32);
+
+ // same number of input channels
+ GGML_ASSERT(input->ne[2] == kernel->ne[2]);
+
+ cudaStream_t st = ctx.stream();
+
+ const int32_t * p = (const int32_t *) dst->op_params;
+ const int ST_X = p[0]; // stride_x
+ const int ST_Y = p[1]; // stride_y
+ const int PD_X = p[2]; // padding_x
+ const int PD_Y = p[3]; // padding_y
+ const int DL_X = p[4]; // dilation_x
+ const int DL_Y = p[5]; // dilation_y
+
+ // No cwhn
+ GGML_ASSERT(p[6] == false);
+
+ const int IW = input->ne[0]; // input_w
+ const int IH = input->ne[1]; // input_h
+ const int OW = dst->ne[0]; // output_w
+ const int OH = dst->ne[1]; // output_h
+ const int KW = kernel->ne[0]; // kernel_w
+ const int KH = kernel->ne[1]; // kernel_h
+ const int IC = input->ne[2]; // input_channels
+ const int OC = kernel->ne[3]; // ouptut_chanles
+ const int B = input->ne[3]; // n_batches
+
+ const int64_t total = B * OC * OH * OW;
+ conv_params params = { IW, IH, OW, OH, KW, KH, ST_X, ST_Y, PD_X, PD_Y, DL_X, DL_Y, IC, OC, B, total };
+
+ if (kernel->type == GGML_TYPE_F16) {
+ conv2d_cuda_f16(X_D, (half *) K_D, Y_D, params, st);
+ } else {
+ conv2d_cuda_f32(X_D, K_D, Y_D, params, st);
+ }
+}
diff --git a/ggml/src/ggml-cuda/conv2d.cuh b/ggml/src/ggml-cuda/conv2d.cuh
new file mode 100644
index 0000000000000..ce4802c7ed797
--- /dev/null
+++ b/ggml/src/ggml-cuda/conv2d.cuh
@@ -0,0 +1,5 @@
+#pragma once
+#include "common.cuh"
+
+#define CUDA_CONV2D_BLOCK_SIZE 256
+void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index 3a50527248045..4c02b57227a88 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -12,6 +12,7 @@
#include "ggml-cuda/clamp.cuh"
#include "ggml-cuda/concat.cuh"
#include "ggml-cuda/conv-transpose-1d.cuh"
+#include "ggml-cuda/conv2d.cuh"
#include "ggml-cuda/conv2d-dw.cuh"
#include "ggml-cuda/conv2d-transpose.cuh"
#include "ggml-cuda/convert.cuh"
@@ -2451,6 +2452,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_IM2COL:
ggml_cuda_op_im2col(ctx, dst);
break;
+ case GGML_OP_CONV_2D:
+ ggml_cuda_op_conv2d(ctx, dst);
+ break;
case GGML_OP_CONV_2D_DW:
ggml_cuda_op_conv2d_dw(ctx, dst);
break;
@@ -3501,6 +3505,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);
}
case GGML_OP_IM2COL:
+ case GGML_OP_CONV_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_CONV_TRANSPOSE_2D:
case GGML_OP_POOL_2D:
diff --git a/tools/server/README.md b/tools/server/README.md
index baf3730add67c..6962b0d3a21a8 100644
--- a/tools/server/README.md
+++ b/tools/server/README.md
@@ -1143,6 +1143,8 @@ The `response_format` parameter supports both plain JSON output (e.g. `{"type":
`parse_tool_calls`: Whether to parse the generated tool call.
+`parallel_tool_calls` : Whether to enable parallel/multiple tool calls (only supported on some models, verification is based on jinja template).
+
*Examples:*
You can use either Python `openai` library with appropriate checkpoints: