Skip to content
8 changes: 8 additions & 0 deletions ggml/src/ggml-cuda/common.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -224,6 +224,10 @@ static const char * cu_get_error_str(CUresult err) {
#define AMD_MFMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)

#if defined(GGML_USE_HIP) && defined(RDNA4)
#define AMD_WMMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(RDNA4)

// The Volta instructions are in principle available on Turing or newer but they are effectively unusable:
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
#define VOLTA_MMA_AVAILABLE
Expand Down Expand Up @@ -283,6 +287,10 @@ static bool amd_mfma_available(const int cc) {
#endif //!defined(GGML_HIP_NO_MMQ_MFMA)
}

static bool amd_wmma_available(const int cc) {
return GGML_CUDA_CC_IS_RDNA4(cc);
}

static bool volta_mma_available(const int cc) {
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) == GGML_CUDA_CC_VOLTA;
}
Expand Down
4 changes: 4 additions & 0 deletions ggml/src/ggml-cuda/convert.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,10 @@ template<typename dst_t, typename src_t>
return __float2bfloat16(float(x));
} else if constexpr(std::is_same_v<src_t, nv_bfloat16>) {
return __bfloat162float(x);
} else if constexpr(std::is_same_v<src_t, float2> && std::is_same_v<dst_t, half2>) {
return __float22half2_rn(x);
} else if constexpr(std::is_same_v<src_t, float2> && std::is_same_v<dst_t, nv_bfloat162>) {
return __float22bfloat162_rn(x);
} else if constexpr(std::is_same_v<dst_t, int32_t>) {
return int32_t(x);
} else {
Expand Down
107 changes: 107 additions & 0 deletions ggml/src/ggml-cuda/mma.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,33 @@ namespace ggml_cuda_mma {
static constexpr int J = J_;

#if defined(GGML_USE_HIP)
#if defined(RDNA4)
static constexpr int ne = I * J / 32;
T x[ne] = {0};

static constexpr __device__ bool supported() {
if (I == 16 && J == 16) return true;
return false;
}

static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 16 && J == 16) {
return 8 * (threadIdx.x / 16) + l;
} else {
NO_DEVICE_CODE;
return -1;
}
}

static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 16 && J == 16) {
return threadIdx.x % 16;
} else {
NO_DEVICE_CODE;
return -1;
}
}
#else
static constexpr int ne = I * J / 64;
T x[ne] = {0};

Expand Down Expand Up @@ -119,6 +146,7 @@ namespace ggml_cuda_mma {
return -1;
}
}
#endif // defined(RDNA4)
#elif __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
static constexpr int ne = I * J / 32;
T x[ne] = {0};
Expand Down Expand Up @@ -236,6 +264,32 @@ namespace ggml_cuda_mma {
return -1;
}
}
#elif defined(AMD_WMMA_AVAILABLE)
static constexpr int ne = I * J / 32;
half2 x[ne] = {{0.0f, 0.0f}};

static constexpr __device__ bool supported() {
if (I == 16 && J == 8) return true;
return false;
}

static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 16 && J == 8) {
return threadIdx.x % 16;
} else {
NO_DEVICE_CODE;
return -1;
}
}

static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 16 && J == 8) {
return 4 * (threadIdx.x / 16) + l;
} else {
NO_DEVICE_CODE;
return -1;
}
}
#else
static constexpr int ne = I * J / WARP_SIZE;
half2 x[ne] = {{0.0f, 0.0f}};
Expand Down Expand Up @@ -285,6 +339,34 @@ namespace ggml_cuda_mma {
struct tile<I_, J_, nv_bfloat162> {
static constexpr int I = I_;
static constexpr int J = J_;

#if defined(AMD_WMMA_AVAILABLE)
static constexpr int ne = I * J / 32;
nv_bfloat162 x[ne] = {{0.0f, 0.0f}};

static constexpr __device__ bool supported() {
if (I == 16 && J == 8) return true;
return false;
}

static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 16 && J == 8) {
return threadIdx.x % 16;
} else {
NO_DEVICE_CODE;
return -1;
}
}

static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 16 && J == 8) {
return 4 * (threadIdx.x / 16) + l;
} else {
NO_DEVICE_CODE;
return -1;
}
}
#else
static constexpr int ne = I * J / WARP_SIZE;
nv_bfloat162 x[ne] = {{0.0f, 0.0f}};

Expand Down Expand Up @@ -320,6 +402,7 @@ namespace ggml_cuda_mma {
return -1;
}
}
#endif // defined(AMD_WMMA_AVAILABLE)
};

template <int I, int J>
Expand Down Expand Up @@ -353,6 +436,8 @@ namespace ggml_cuda_mma {
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 2 * (threadIdx.x / t.I));
xi[0] = xs[0];
}
#elif defined(AMD_WMMA_AVAILABLE)
ggml_cuda_memcpy_1<sizeof(t.x)>(t.x, xs0 + t.get_i(0) * stride + t.get_j(0));
#else
#pragma unroll
for (int l = 0; l < t.ne; ++l) {
Expand Down Expand Up @@ -639,12 +724,34 @@ namespace ggml_cuda_mma {
: "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[3]));
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#elif defined(AMD_WMMA_AVAILABLE)
using halfx8_t = __attribute__((ext_vector_type(8))) _Float16;
using floatx8_t = __attribute__((ext_vector_type(8))) float;
floatx8_t& acc_frag = reinterpret_cast<floatx8_t&>(D.x[0]);
const halfx8_t& a_frag = reinterpret_cast<const halfx8_t&>(A.x[0]);
const halfx8_t& b_frag = reinterpret_cast<const halfx8_t&>(B.x[0]);
acc_frag = __builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12(a_frag, b_frag, acc_frag);
#else
GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE;
#endif // TURING_MMA_AVAILABLE
}

static __device__ __forceinline__ void mma(
tile<16, 16, float> & D, const tile<16, 8, nv_bfloat162> & A, const tile<16, 8, nv_bfloat162> & B) {
#if defined(AMD_WMMA_AVAILABLE)
using bf16x8_t = __attribute__((ext_vector_type(8))) __bf16;
using floatx8_t = __attribute__((ext_vector_type(8))) float;
floatx8_t& acc_frag = reinterpret_cast<floatx8_t&>(D.x[0]);
const bf16x8_t& a_frag = reinterpret_cast<const bf16x8_t&>(A.x[0]);
const bf16x8_t& b_frag = reinterpret_cast<const bf16x8_t&>(B.x[0]);
acc_frag = __builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12(a_frag, b_frag, acc_frag);
#else
GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE;
#endif // AMPERE_MMA_AVAILABLE
}

static __device__ __forceinline__ void mma(
tile<16, 16, int> & D, const tile<16, 8, int> & A, const tile<16, 8, int> & B) {
#if defined(AMD_MFMA_AVAILABLE)
Expand Down
6 changes: 3 additions & 3 deletions ggml/src/ggml-cuda/mmf.cu
Original file line number Diff line number Diff line change
Expand Up @@ -151,7 +151,7 @@ bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const
return false;
}
} else {
if (src1_ncols > 16) {
if (src1_ncols > 16 || GGML_CUDA_CC_IS_RDNA4(cc)) {
return false;
}
}
Expand All @@ -160,9 +160,9 @@ bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const
case GGML_TYPE_F32:
return ampere_mma_available(cc);
case GGML_TYPE_F16:
return volta_mma_available(cc) || turing_mma_available(cc);
return volta_mma_available(cc) || turing_mma_available(cc) || amd_wmma_available(cc);
case GGML_TYPE_BF16:
return ampere_mma_available(cc);
return ampere_mma_available(cc) || amd_wmma_available(cc);
default:
return false;
}
Expand Down
75 changes: 55 additions & 20 deletions ggml/src/ggml-cuda/mmf.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

#include "mma.cuh"
#include "common.cuh"
#include "convert.cuh"

using namespace ggml_cuda_mma;

Expand All @@ -27,20 +28,36 @@ static __global__ void mul_mat_f(
const int stride_col_id, const int stride_row_id,
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
// TODO: handle this in a consistent and simpler way after AMD MFMA support has been added
// The ideal one shall be: #if defined(VOLTA_MMA_AVAILABLE) || defined(TURING_MMA_AVAILABLE) || defined(AMD_WMMA_AVAILABLE) || defined(AMD_MFMA_AVAILABLE)
#if (!defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)) || defined(AMD_WMMA_AVAILABLE)
#if defined(AMD_WMMA_AVAILABLE)
// Special case for tf32, just dummy mma layout as wmma doesn't support it.
constexpr int tile_B_I = std::is_same_v<T, float> ? 8 : 16;
constexpr int tile_C_J = std::is_same_v<T, float> ? 8 : 16;
typedef tile<16, 8, T> tile_A;
typedef tile<tile_B_I, 8, T> tile_B;
typedef tile<16, tile_C_J, float> tile_C;

constexpr bool a_supported = tile_A::supported();
constexpr bool b_supported = tile_B::supported();
constexpr bool c_supported = tile_C::supported();
constexpr bool supported = a_supported && b_supported && c_supported;
#else
constexpr bool I_16_supported = tile<16, 8, T>::supported() && tile<16, 8, float>::supported();
constexpr bool I_32_supported = tile<32, 8, T>::supported() && tile<32, 8, float>::supported();

if (!I_16_supported && !I_32_supported) {
NO_DEVICE_CODE;
return;
}
constexpr bool supported = I_16_supported || I_32_supported;

constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work but 16 is ~1% faster.

typedef tile<I_preferred, 8, T> tile_A;
typedef tile<8, 8, T> tile_B;
typedef tile<I_preferred, 8, float> tile_C;
#endif // defined(AMD_WMMA_AVAILABLE)
if constexpr (!supported) {
NO_DEVICE_CODE;
return;
}

constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr int tile_k_padded = warp_size + 4;
Expand Down Expand Up @@ -161,11 +178,11 @@ static __global__ void mul_mat_f(

if constexpr (!has_ids) {
const float2 tmp = j < cols_per_block ? y2[j*stride_col_y + col] : make_float2(0.0f, 0.0f);
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y};
tile_xy[j0*tile_k_padded + threadIdx.x] = ggml_cuda_cast<T, float2>(tmp);
} else {
const bool valid = j < cols_per_block && (col_base + j) < ncols_dst_total && slot_map[j] >= 0;
float2 tmp = valid ? *(const float2*) &y[slot_map[j]*stride_channel_y + 2*(j*stride_col_y + col)] : make_float2(0.0f, 0.0f);
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y};
tile_xy[j0*tile_k_padded + threadIdx.x] = ggml_cuda_cast<T, float2>(tmp);
}
}
} else {
Expand Down Expand Up @@ -239,7 +256,7 @@ static __global__ void mul_mat_f(
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
NO_DEVICE_CODE;
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)) || defined(AMD_WMMA_AVAILABLE)
}

//This kernel is for larger batch sizes of mul_mat_id
Expand All @@ -253,20 +270,36 @@ static __global__ void mul_mat_f_ids(
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
const uint3 sis1_fd, const uint3 nch_fd) {
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
// TODO: handle this in a consistent and simpler way after AMD MFMA support has been added
// The ideal one shall be: #if defined(VOLTA_MMA_AVAILABLE) || defined(TURING_MMA_AVAILABLE) || defined(AMD_WMMA_AVAILABLE) || defined(AMD_MFMA_AVAILABLE)
#if (!defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)) || defined(AMD_WMMA_AVAILABLE)
#if defined(AMD_WMMA_AVAILABLE)
// Special case for tf32, just dummy mma layout as wmma doesn't support it.
constexpr int tile_B_I = std::is_same_v<T, float> ? 8 : 16;
constexpr int tile_C_J = std::is_same_v<T, float> ? 8 : 16;
typedef tile<16, 8, T> tile_A;
typedef tile<tile_B_I, 8, T> tile_B;
typedef tile<16, tile_C_J, float> tile_C;

constexpr bool a_supported = tile_A::supported();
constexpr bool b_supported = tile_B::supported();
constexpr bool c_supported = tile_C::supported();
constexpr bool supported = a_supported && b_supported && c_supported;
#else
constexpr bool I_16_supported = tile<16, 8, T>::supported() && tile<16, 8, float>::supported();
constexpr bool I_32_supported = tile<32, 8, T>::supported() && tile<32, 8, float>::supported();
constexpr bool supported = I_16_supported || I_32_supported;

if (!I_16_supported && !I_32_supported) {
NO_DEVICE_CODE;
return;
}

constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work butr 16 is ~1% faster.
constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work but 16 is ~1% faster.

typedef tile<I_preferred, 8, T> tile_A;
typedef tile<8, 8, T> tile_B;
typedef tile<I_preferred, 8, float> tile_C;
#endif // defined(AMD_WMMA_AVAILABLE)
if constexpr (!supported) {
NO_DEVICE_CODE;
return;
}

constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr int tile_k_padded = warp_size + 4;
Expand Down Expand Up @@ -408,7 +441,7 @@ static __global__ void mul_mat_f_ids(
#pragma unroll
for (int j0 = 0; j0 < tile_B::I; ++j0) {
const float2 tmp = vals_buf[curr_buf][j0];
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y};
tile_xy[j0*tile_k_padded + threadIdx.x] = ggml_cuda_cast<T, float2>(tmp);
}

if (itB + 1 < ntB) {
Expand Down Expand Up @@ -492,7 +525,7 @@ static __global__ void mul_mat_f_ids(
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, sis1_fd, nch_fd);
NO_DEVICE_CODE;
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)) || defined(AMD_WMMA_AVAILABLE)
}

template<typename T, int cols_per_block, int nwarps>
Expand Down Expand Up @@ -554,7 +587,8 @@ void mul_mat_f_cuda(
cudaStream_t stream, const mmf_ids_data * ids_data) {
typedef tile<16, 8, T> tile_A_16;
typedef tile<32, 8, T> tile_A_32;
typedef tile< 8, 8, T> tile_B;
typedef tile<16, 8, T> tile_B_16;
typedef tile< 8, 8, T> tile_B_8;

GGML_ASSERT(ncols_x % 2 == 0);
GGML_ASSERT(stride_row % 2 == 0);
Expand All @@ -581,7 +615,8 @@ void mul_mat_f_cuda(

constexpr int rows_per_block = MMF_ROWS_PER_BLOCK;
const int nbytes_shared_iter = nwarps_best * (volta_mma_available(cc) ? tile_A_32::I : tile_A_16::I) * (warp_size + 4) * 4;
const int nbytes_shared_combine = GGML_PAD(cols_per_block, tile_B::I) * (nwarps_best*rows_per_block + 4) * 4;
const int nbytes_cols_per_block_pad = amd_wmma_available(cc) ? tile_B_16::I : tile_B_8::I;
const int nbytes_shared_combine = GGML_PAD(cols_per_block, nbytes_cols_per_block_pad) * (nwarps_best*rows_per_block + 4) * 4;
const int nbytes_shared = std::max(nbytes_shared_iter, nbytes_shared_combine);
const int nbytes_slotmap = ids ? GGML_PAD(cols_per_block, 16) * sizeof(int) : 0;
const int nbytes_shared_total = nbytes_shared + nbytes_slotmap;
Expand Down