@@ -385,6 +385,14 @@ enum shader_reduction_mode {
385385
386386static constexpr uint32_t num_argsort_pipelines = 11;
387387static constexpr uint32_t max_argsort_cols = 1 << (num_argsort_pipelines-1);
388+ static constexpr uint32_t num_topk_moe_pipelines = 10;
389+
390+ static constexpr std::array topk_moe_norm{ GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
391+ GGML_OP_VIEW, GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
392+ GGML_OP_SUM_ROWS, GGML_OP_DIV, GGML_OP_RESHAPE };
393+ static constexpr std::array topk_moe { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
394+ GGML_OP_VIEW, GGML_OP_GET_ROWS };
395+
388396
389397struct vk_device_struct {
390398 std::recursive_mutex mutex;
@@ -598,6 +606,9 @@ struct vk_device_struct {
598606
599607 vk_pipeline pipeline_flash_attn_split_k_reduce;
600608
609+ // [2] is {!norm, norm}
610+ vk_pipeline pipeline_topk_moe[num_topk_moe_pipelines][2];
611+
601612 std::vector<vk_pipeline_ref> all_pipelines;
602613
603614 std::vector<std::tuple<void*, size_t, vk_buffer>> pinned_memory;
@@ -941,6 +952,11 @@ struct vk_op_multi_add_push_constants {
941952static_assert(MAX_PARAMETER_COUNT == 12);
942953static_assert(sizeof(vk_op_multi_add_push_constants) <= 256);
943954
955+ struct vk_op_topk_moe_push_constants {
956+ uint32_t n_rows;
957+ uint32_t n_expert_used;
958+ };
959+
944960struct vk_op_add_id_push_constants {
945961 uint32_t ne0;
946962 uint32_t ne1;
@@ -3722,6 +3738,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
37223738 ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f16_f32, "conv2d_dw_whcn_f16_f32", conv2d_dw_whcn_f16_f32_len, conv2d_dw_whcn_f16_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
37233739 ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f16_f32, "conv2d_dw_cwhn_f16_f32", conv2d_dw_cwhn_f16_f32_len, conv2d_dw_cwhn_f16_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
37243740
3741+ for (uint32_t i = 0; i < num_topk_moe_pipelines; ++i) {
3742+ ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][0], "topk_moe_f32_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0}, 1, true, true);
3743+ ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][1], "topk_moe_f32_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 1}, 1, true, true);
3744+ }
3745+
37253746 for (auto &c : compiles) {
37263747 c.wait();
37273748 }
@@ -8004,6 +8025,13 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
80048025 GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16);
80058026 GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F32);
80068027
8028+ if (ctx->num_additional_fused_ops) {
8029+ uint32_t idx = (uint32_t)ceilf(log2f(float(dst->ne[0])));
8030+ GGML_ASSERT(idx < num_topk_moe_pipelines);
8031+ bool with_norm = ctx->num_additional_fused_ops == topk_moe_norm.size() - 1;
8032+ return ctx->device->pipeline_topk_moe[idx][with_norm];
8033+ }
8034+
80078035 if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
80088036 return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_wg512 : ctx->device->pipeline_soft_max_f32;
80098037 }
@@ -9589,6 +9617,87 @@ static void ggml_vk_soft_max_back(ggml_backend_vk_context * ctx, vk_context& sub
95899617 ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SOFT_MAX_BACK, { (uint32_t)src0->ne[0], (uint32_t)ggml_nrows(src0), op_params[0], op_params[1] }, dryrun);
95909618}
95919619
9620+ static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_cgraph * cgraph, int node_idx, bool dryrun = false) {
9621+
9622+ bool with_norm = ctx->num_additional_fused_ops == topk_moe_norm.size() - 1;
9623+ ggml_tensor * logits = cgraph->nodes[node_idx + 0]->src[0];
9624+ ggml_tensor * weights = with_norm ? cgraph->nodes[node_idx + 8] : cgraph->nodes[node_idx + 4];
9625+ ggml_tensor * ids = cgraph->nodes[node_idx + 3];
9626+
9627+ GGML_ASSERT(logits->type == GGML_TYPE_F32);
9628+ GGML_ASSERT(weights->type == GGML_TYPE_F32);
9629+ GGML_ASSERT(ids->type == GGML_TYPE_I32);
9630+
9631+ const int n_experts = logits->ne[0];
9632+ const int n_rows = logits->ne[1];
9633+ const int n_expert_used = weights->ne[1];
9634+
9635+ GGML_ASSERT(ids->nb[1] / ggml_type_size(ids->type) == (size_t) n_experts);
9636+
9637+ vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, nullptr, nullptr, nullptr, cgraph->nodes[node_idx], GGML_OP_SOFT_MAX);
9638+
9639+ if (dryrun) {
9640+ ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
9641+ return;
9642+ }
9643+
9644+ ggml_backend_vk_buffer_context * logits_buf_ctx = (ggml_backend_vk_buffer_context *)logits->buffer->context;
9645+ ggml_backend_vk_buffer_context * weights_buf_ctx = (ggml_backend_vk_buffer_context *)weights->buffer->context;
9646+ ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
9647+
9648+ vk_buffer d_logits = nullptr;
9649+ size_t logits_buf_offset = 0;
9650+ vk_buffer d_weights = nullptr;
9651+ size_t weights_buf_offset = 0;
9652+ vk_buffer d_ids = nullptr;
9653+ size_t ids_buf_offset = 0;
9654+
9655+ bool logits_uma = false;
9656+ bool weights_uma = false;
9657+ bool ids_uma = false;
9658+
9659+ if (ctx->device->uma) {
9660+ ggml_vk_host_get(ctx->device, logits->data, d_logits, logits_buf_offset);
9661+ ggml_vk_host_get(ctx->device, weights->data, d_weights, weights_buf_offset);
9662+ ggml_vk_host_get(ctx->device, ids->data, d_ids, ids_buf_offset);
9663+ logits_uma = d_logits != nullptr;
9664+ weights_uma = d_weights != nullptr;
9665+ ids_uma = d_ids != nullptr;
9666+ }
9667+
9668+ if (!logits_uma) {
9669+ d_logits = logits_buf_ctx->dev_buffer;
9670+ logits_buf_offset = vk_tensor_offset(logits) + logits->view_offs;
9671+ GGML_ASSERT(d_logits != nullptr);
9672+ }
9673+ if (!weights_uma) {
9674+ d_weights = weights_buf_ctx->dev_buffer;
9675+ weights_buf_offset = vk_tensor_offset(weights) + weights->view_offs;
9676+ GGML_ASSERT(d_weights != nullptr);
9677+ }
9678+ if (!ids_uma) {
9679+ d_ids = ids_buf_ctx->dev_buffer;
9680+ ids_buf_offset = vk_tensor_offset(ids) + ids->view_offs;
9681+ GGML_ASSERT(d_ids != nullptr);
9682+ }
9683+
9684+ vk_op_topk_moe_push_constants pc;
9685+ pc.n_rows = n_rows;
9686+ pc.n_expert_used = n_expert_used;
9687+
9688+ GGML_ASSERT(n_expert_used <= n_experts);
9689+
9690+ const uint32_t rows_per_block = 4;
9691+ std::array<uint32_t, 3> elements = { CEIL_DIV(n_rows, rows_per_block), 1, 1 };
9692+
9693+ ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
9694+ {
9695+ ggml_vk_subbuffer(ctx, d_logits, logits_buf_offset),
9696+ ggml_vk_subbuffer(ctx, d_weights, weights_buf_offset),
9697+ ggml_vk_subbuffer(ctx, d_ids, ids_buf_offset),
9698+ }, pc, elements);
9699+ }
9700+
95929701static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool backprop, bool dryrun = false) {
95939702 const int n_dims = ((int32_t *) dst->op_params)[1];
95949703 const int mode = ((int32_t *) dst->op_params)[2];
@@ -11174,11 +11283,11 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
1117411283 ctx->unsynced_nodes_read.clear();
1117511284 ggml_vk_sync_buffers(ctx, compute_ctx);
1117611285 }
11177- // Add the last fused node and all fused source nodes to the unsynchronized list.
11178- const ggml_tensor * last_node = cgraph->nodes[node_idx + ctx->num_additional_fused_ops];
11179- ctx->unsynced_nodes_written.push_back(last_node);
11286+ // Add all fused nodes to the unsynchronized lists.
1118011287 for (int32_t i = 0; i < ctx->num_additional_fused_ops + 1; ++i) {
1118111288 const ggml_tensor *cur_node = cgraph->nodes[node_idx + i];
11289+ // Multiple outputs could be written, e.g. in topk_moe. Add them all to the list.
11290+ ctx->unsynced_nodes_written.push_back(cur_node);
1118211291 for (uint32_t j = 0; j < GGML_MAX_SRC; ++j) {
1118311292 if (!cur_node->src[j]) {
1118411293 continue;
@@ -11345,7 +11454,11 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
1134511454
1134611455 break;
1134711456 case GGML_OP_SOFT_MAX:
11348- ggml_vk_soft_max(ctx, compute_ctx, src0, src1, src2, node, dryrun);
11457+ if (ctx->num_additional_fused_ops) {
11458+ ggml_vk_topk_moe(ctx, compute_ctx, cgraph, node_idx, dryrun);
11459+ } else {
11460+ ggml_vk_soft_max(ctx, compute_ctx, src0, src1, src2, node, dryrun);
11461+ }
1134911462
1135011463 break;
1135111464 case GGML_OP_SOFT_MAX_BACK:
@@ -12141,6 +12254,120 @@ static bool ggml_vk_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, st
1214112254 return true;
1214212255}
1214312256
12257+ static bool ggml_vk_can_fuse_topk_moe(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph,
12258+ int node_idx, bool with_norm) {
12259+
12260+ if (with_norm) {
12261+ if (node_idx + (int)topk_moe_norm.size() > cgraph->n_nodes) {
12262+ return false;
12263+ }
12264+ for (size_t i = 0; i < topk_moe_norm.size(); ++i) {
12265+ if (cgraph->nodes[node_idx + i]->op != topk_moe_norm[i]) {
12266+ return false;
12267+ }
12268+ }
12269+ } else {
12270+ if (node_idx + (int)topk_moe.size() > cgraph->n_nodes) {
12271+ return false;
12272+ }
12273+ for (size_t i = 0; i < topk_moe.size(); ++i) {
12274+ if (cgraph->nodes[node_idx + i]->op != topk_moe[i]) {
12275+ return false;
12276+ }
12277+ }
12278+ }
12279+
12280+ const ggml_tensor * softmax = cgraph->nodes[node_idx + 0];
12281+ const ggml_tensor * weights = with_norm ? cgraph->nodes[node_idx + 8] : cgraph->nodes[node_idx + 4];
12282+
12283+ const float * op_params = (const float *)softmax->op_params;
12284+
12285+ float scale = op_params[0];
12286+ float max_bias = op_params[1];
12287+
12288+ if (!ggml_is_contiguous(softmax->src[0]) || !ggml_is_contiguous(weights)) {
12289+ return false;
12290+ }
12291+
12292+ if (scale != 1.0f || max_bias != 0.0f) {
12293+ return false;
12294+ }
12295+
12296+ // don't fuse when masks or sinks are present
12297+ if (softmax->src[1] || softmax->src[2]) {
12298+ return false;
12299+ }
12300+
12301+ const int n_expert = softmax->ne[0];
12302+ // n_expert must be a power of 2
12303+ if (!is_pow2(n_expert) || n_expert > (1 << (num_topk_moe_pipelines-1))) {
12304+ return false;
12305+ }
12306+
12307+ // Check that the nodes don't have any unexpected uses
12308+ const ggml_tensor * reshape1 = cgraph->nodes[node_idx + 1];
12309+ const ggml_tensor * argsort = cgraph->nodes[node_idx + 2];
12310+ const ggml_tensor * view = cgraph->nodes[node_idx + 3];
12311+ const ggml_tensor * get_rows = cgraph->nodes[node_idx + 4];
12312+ const ggml_tensor * reshape5 = with_norm ? cgraph->nodes[node_idx + 5] : nullptr;
12313+ const ggml_tensor * sum_rows = with_norm ? cgraph->nodes[node_idx + 6] : nullptr;
12314+ const ggml_tensor * div = with_norm ? cgraph->nodes[node_idx + 7] : nullptr;
12315+ const ggml_tensor * reshape8 = with_norm ? cgraph->nodes[node_idx + 8] : nullptr;
12316+
12317+ // softmax is used by reshape and argsort
12318+ if (ggml_node_get_use_count(cgraph, node_idx) != 2 ||
12319+ reshape1->src[0] != softmax ||
12320+ argsort->src[0] != softmax) {
12321+ return false;
12322+ }
12323+ // reshape is used by get_rows
12324+ if (ggml_node_get_use_count(cgraph, node_idx + 1) != 1 ||
12325+ get_rows->src[0] != reshape1) {
12326+ return false;
12327+ }
12328+ // argsort is used by view
12329+ if (ggml_node_get_use_count(cgraph, node_idx + 2) != 1 ||
12330+ view->src[0] != argsort) {
12331+ return false;
12332+ }
12333+ // view is written (via argsort), we can skip checking it
12334+
12335+ if (with_norm) {
12336+ // get_rows is used by reshape
12337+ if (ggml_node_get_use_count(cgraph, node_idx + 4) != 1 ||
12338+ reshape5->src[0] != get_rows) {
12339+ return false;
12340+ }
12341+
12342+ // reshape is used by sum_rows and div
12343+ if (ggml_node_get_use_count(cgraph, node_idx + 5) != 2 ||
12344+ sum_rows->src[0] != reshape5 ||
12345+ div->src[0] != reshape5) {
12346+ return false;
12347+ }
12348+
12349+ // sum_rows is used by div
12350+ if (ggml_node_get_use_count(cgraph, node_idx + 6) != 1 ||
12351+ div->src[1] != sum_rows) {
12352+ return false;
12353+ }
12354+
12355+ // div/reshape are written
12356+ if (reshape8->src[0] != div) {
12357+ return false;
12358+ }
12359+ }
12360+
12361+ if (!ctx->device->subgroup_arithmetic ||
12362+ !ctx->device->subgroup_shuffle ||
12363+ !ctx->device->subgroup_require_full_support ||
12364+ ctx->device->disable_fusion) {
12365+ return false;
12366+ }
12367+
12368+ return true;
12369+ }
12370+
1214412371static uint32_t ggml_vk_fuse_multi_add(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph, int node_idx) {
1214512372
1214612373 const ggml_tensor *first_node = cgraph->nodes[node_idx];
@@ -12216,6 +12443,10 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
1221612443 ctx->num_additional_fused_ops = num_adds - 1;
1221712444 } else if (ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
1221812445 ctx->num_additional_fused_ops = 1;
12446+ } else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, true)) {
12447+ ctx->num_additional_fused_ops = topk_moe_norm.size() - 1;
12448+ } else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, false)) {
12449+ ctx->num_additional_fused_ops = topk_moe.size() - 1;
1221912450 }
1222012451 }
1222112452 ggml_vk_build_graph(ctx, cgraph, i, nullptr, 0, true, false, false, false);
@@ -12313,17 +12544,21 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
1231312544 ctx->num_additional_fused_ops = num_adds - 1;
1231412545 } else if (ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
1231512546 ctx->num_additional_fused_ops = 1;
12547+ } else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, true)) {
12548+ ctx->num_additional_fused_ops = topk_moe_norm.size() - 1;
12549+ } else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, false)) {
12550+ ctx->num_additional_fused_ops = topk_moe.size() - 1;
1231612551 }
1231712552 }
1231812553
1231912554 // Signal the almost_ready fence when the graph is mostly complete (< 20% remaining)
1232012555 bool almost_ready = (cgraph->n_nodes - i) < cgraph->n_nodes / 5;
1232112556 bool submit = (submitted_nodes >= nodes_per_submit) ||
1232212557 (mul_mat_bytes >= mul_mat_bytes_per_submit) ||
12323- (i + ctx->num_additional_fused_ops = = last_node) ||
12558+ (i + ctx->num_additional_fused_ops > = last_node) ||
1232412559 (almost_ready && !ctx->almost_ready_fence_pending);
1232512560
12326- bool enqueued = ggml_vk_build_graph(ctx, cgraph, i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i + ctx->num_additional_fused_ops = = last_node, almost_ready, submit);
12561+ bool enqueued = ggml_vk_build_graph(ctx, cgraph, i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i + ctx->num_additional_fused_ops > = last_node, almost_ready, submit);
1232712562
1232812563 if (vk_perf_logger_enabled) {
1232912564 if (ctx->compute_ctx.expired()) {
@@ -12444,6 +12679,25 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph *
1244412679 while (first_unused < graph->n_nodes) {
1244512680 std::vector<int> current_set;
1244612681
12682+ // Avoid reordering topk_moe_norm
12683+ if (first_unused + (int)topk_moe_norm.size() <= graph->n_nodes) {
12684+ bool is_topk_moe_norm = true;
12685+ for (size_t j = 0; j < topk_moe_norm.size(); ++j) {
12686+ if (graph->nodes[first_unused + j]->op != topk_moe_norm[j] || used[first_unused + j]) {
12687+ is_topk_moe_norm = false;
12688+ }
12689+ }
12690+ if (is_topk_moe_norm) {
12691+ for (size_t j = 0; j < topk_moe_norm.size(); ++j) {
12692+ new_order.push_back(graph->nodes[first_unused + j]);
12693+ used[first_unused + j] = true;
12694+ }
12695+ while (first_unused < graph->n_nodes && used[first_unused]) {
12696+ first_unused++;
12697+ }
12698+ continue;
12699+ }
12700+ }
1244712701 // First, grab the next unused node.
1244812702 current_set.push_back(first_unused);
1244912703
0 commit comments