|
| 1 | +/* |
| 2 | + * Based on the Mozilla SHA1 (see mozilla-sha1/sha1.c), |
| 3 | + * optimized to do word accesses rather than byte accesses, |
| 4 | + * and to avoid unnecessary copies into the context array. |
| 5 | + */ |
| 6 | + |
| 7 | +#include <string.h> |
| 8 | +#include <arpa/inet.h> |
| 9 | + |
| 10 | +#include "sha1.h" |
| 11 | + |
| 12 | +#if defined(__i386__) || defined(__x86_64__) |
| 13 | + |
| 14 | +/* |
| 15 | + * Force usage of rol or ror by selecting the one with the smaller constant. |
| 16 | + * It _can_ generate slightly smaller code (a constant of 1 is special), but |
| 17 | + * perhaps more importantly it's possibly faster on any uarch that does a |
| 18 | + * rotate with a loop. |
| 19 | + */ |
| 20 | + |
| 21 | +#define SHA_ASM(op, x, n) ({ unsigned int __res; __asm__(op " %1,%0":"=r" (__res):"i" (n), "0" (x)); __res; }) |
| 22 | +#define SHA_ROL(x,n) SHA_ASM("rol", x, n) |
| 23 | +#define SHA_ROR(x,n) SHA_ASM("ror", x, n) |
| 24 | + |
| 25 | +#else |
| 26 | + |
| 27 | +#define SHA_ROT(X,l,r) (((X) << (l)) | ((X) >> (r))) |
| 28 | +#define SHA_ROL(X,n) SHA_ROT(X,n,32-(n)) |
| 29 | +#define SHA_ROR(X,n) SHA_ROT(X,32-(n),n) |
| 30 | + |
| 31 | +#endif |
| 32 | + |
| 33 | +/* |
| 34 | + * If you have 32 registers or more, the compiler can (and should) |
| 35 | + * try to change the array[] accesses into registers. However, on |
| 36 | + * machines with less than ~25 registers, that won't really work, |
| 37 | + * and at least gcc will make an unholy mess of it. |
| 38 | + * |
| 39 | + * So to avoid that mess which just slows things down, we force |
| 40 | + * the stores to memory to actually happen (we might be better off |
| 41 | + * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as |
| 42 | + * suggested by Artur Skawina - that will also make gcc unable to |
| 43 | + * try to do the silly "optimize away loads" part because it won't |
| 44 | + * see what the value will be). |
| 45 | + * |
| 46 | + * Ben Herrenschmidt reports that on PPC, the C version comes close |
| 47 | + * to the optimized asm with this (ie on PPC you don't want that |
| 48 | + * 'volatile', since there are lots of registers). |
| 49 | + * |
| 50 | + * On ARM we get the best code generation by forcing a full memory barrier |
| 51 | + * between each SHA_ROUND, otherwise gcc happily get wild with spilling and |
| 52 | + * the stack frame size simply explode and performance goes down the drain. |
| 53 | + */ |
| 54 | + |
| 55 | +#if defined(__i386__) || defined(__x86_64__) |
| 56 | + #define setW(x, val) (*(volatile unsigned int *)&W(x) = (val)) |
| 57 | +#elif defined(__arm__) |
| 58 | + #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0) |
| 59 | +#else |
| 60 | + #define setW(x, val) (W(x) = (val)) |
| 61 | +#endif |
| 62 | + |
| 63 | +/* |
| 64 | + * Performance might be improved if the CPU architecture is OK with |
| 65 | + * unaligned 32-bit loads and a fast ntohl() is available. |
| 66 | + * Otherwise fall back to byte loads and shifts which is portable, |
| 67 | + * and is faster on architectures with memory alignment issues. |
| 68 | + */ |
| 69 | + |
| 70 | +#if defined(__i386__) || defined(__x86_64__) || \ |
| 71 | + defined(__ppc__) || defined(__ppc64__) || \ |
| 72 | + defined(__powerpc__) || defined(__powerpc64__) || \ |
| 73 | + defined(__s390__) || defined(__s390x__) |
| 74 | + |
| 75 | +#define get_be32(p) ntohl(*(unsigned int *)(p)) |
| 76 | +#define put_be32(p, v) do { *(unsigned int *)(p) = htonl(v); } while (0) |
| 77 | + |
| 78 | +#else |
| 79 | + |
| 80 | +#define get_be32(p) ( \ |
| 81 | + (*((unsigned char *)(p) + 0) << 24) | \ |
| 82 | + (*((unsigned char *)(p) + 1) << 16) | \ |
| 83 | + (*((unsigned char *)(p) + 2) << 8) | \ |
| 84 | + (*((unsigned char *)(p) + 3) << 0) ) |
| 85 | +#define put_be32(p, v) do { \ |
| 86 | + unsigned int __v = (v); \ |
| 87 | + *((unsigned char *)(p) + 0) = __v >> 24; \ |
| 88 | + *((unsigned char *)(p) + 1) = __v >> 16; \ |
| 89 | + *((unsigned char *)(p) + 2) = __v >> 8; \ |
| 90 | + *((unsigned char *)(p) + 3) = __v >> 0; } while (0) |
| 91 | + |
| 92 | +#endif |
| 93 | + |
| 94 | +/* This "rolls" over the 512-bit array */ |
| 95 | +#define W(x) (array[(x)&15]) |
| 96 | + |
| 97 | +/* |
| 98 | + * Where do we get the source from? The first 16 iterations get it from |
| 99 | + * the input data, the next mix it from the 512-bit array. |
| 100 | + */ |
| 101 | +#define SHA_SRC(t) get_be32(data + t) |
| 102 | +#define SHA_MIX(t) SHA_ROL(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1) |
| 103 | + |
| 104 | +#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \ |
| 105 | + unsigned int TEMP = input(t); setW(t, TEMP); \ |
| 106 | + E += TEMP + SHA_ROL(A,5) + (fn) + (constant); \ |
| 107 | + B = SHA_ROR(B, 2); } while (0) |
| 108 | + |
| 109 | +#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) |
| 110 | +#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) |
| 111 | +#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E ) |
| 112 | +#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E ) |
| 113 | +#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E ) |
| 114 | + |
| 115 | +static void blk_SHA1_Block(blk_SHA_CTX *ctx, const unsigned int *data) |
| 116 | +{ |
| 117 | + unsigned int A,B,C,D,E; |
| 118 | + unsigned int array[16]; |
| 119 | + |
| 120 | + A = ctx->H[0]; |
| 121 | + B = ctx->H[1]; |
| 122 | + C = ctx->H[2]; |
| 123 | + D = ctx->H[3]; |
| 124 | + E = ctx->H[4]; |
| 125 | + |
| 126 | + /* Round 1 - iterations 0-16 take their input from 'data' */ |
| 127 | + T_0_15( 0, A, B, C, D, E); |
| 128 | + T_0_15( 1, E, A, B, C, D); |
| 129 | + T_0_15( 2, D, E, A, B, C); |
| 130 | + T_0_15( 3, C, D, E, A, B); |
| 131 | + T_0_15( 4, B, C, D, E, A); |
| 132 | + T_0_15( 5, A, B, C, D, E); |
| 133 | + T_0_15( 6, E, A, B, C, D); |
| 134 | + T_0_15( 7, D, E, A, B, C); |
| 135 | + T_0_15( 8, C, D, E, A, B); |
| 136 | + T_0_15( 9, B, C, D, E, A); |
| 137 | + T_0_15(10, A, B, C, D, E); |
| 138 | + T_0_15(11, E, A, B, C, D); |
| 139 | + T_0_15(12, D, E, A, B, C); |
| 140 | + T_0_15(13, C, D, E, A, B); |
| 141 | + T_0_15(14, B, C, D, E, A); |
| 142 | + T_0_15(15, A, B, C, D, E); |
| 143 | + |
| 144 | + /* Round 1 - tail. Input from 512-bit mixing array */ |
| 145 | + T_16_19(16, E, A, B, C, D); |
| 146 | + T_16_19(17, D, E, A, B, C); |
| 147 | + T_16_19(18, C, D, E, A, B); |
| 148 | + T_16_19(19, B, C, D, E, A); |
| 149 | + |
| 150 | + /* Round 2 */ |
| 151 | + T_20_39(20, A, B, C, D, E); |
| 152 | + T_20_39(21, E, A, B, C, D); |
| 153 | + T_20_39(22, D, E, A, B, C); |
| 154 | + T_20_39(23, C, D, E, A, B); |
| 155 | + T_20_39(24, B, C, D, E, A); |
| 156 | + T_20_39(25, A, B, C, D, E); |
| 157 | + T_20_39(26, E, A, B, C, D); |
| 158 | + T_20_39(27, D, E, A, B, C); |
| 159 | + T_20_39(28, C, D, E, A, B); |
| 160 | + T_20_39(29, B, C, D, E, A); |
| 161 | + T_20_39(30, A, B, C, D, E); |
| 162 | + T_20_39(31, E, A, B, C, D); |
| 163 | + T_20_39(32, D, E, A, B, C); |
| 164 | + T_20_39(33, C, D, E, A, B); |
| 165 | + T_20_39(34, B, C, D, E, A); |
| 166 | + T_20_39(35, A, B, C, D, E); |
| 167 | + T_20_39(36, E, A, B, C, D); |
| 168 | + T_20_39(37, D, E, A, B, C); |
| 169 | + T_20_39(38, C, D, E, A, B); |
| 170 | + T_20_39(39, B, C, D, E, A); |
| 171 | + |
| 172 | + /* Round 3 */ |
| 173 | + T_40_59(40, A, B, C, D, E); |
| 174 | + T_40_59(41, E, A, B, C, D); |
| 175 | + T_40_59(42, D, E, A, B, C); |
| 176 | + T_40_59(43, C, D, E, A, B); |
| 177 | + T_40_59(44, B, C, D, E, A); |
| 178 | + T_40_59(45, A, B, C, D, E); |
| 179 | + T_40_59(46, E, A, B, C, D); |
| 180 | + T_40_59(47, D, E, A, B, C); |
| 181 | + T_40_59(48, C, D, E, A, B); |
| 182 | + T_40_59(49, B, C, D, E, A); |
| 183 | + T_40_59(50, A, B, C, D, E); |
| 184 | + T_40_59(51, E, A, B, C, D); |
| 185 | + T_40_59(52, D, E, A, B, C); |
| 186 | + T_40_59(53, C, D, E, A, B); |
| 187 | + T_40_59(54, B, C, D, E, A); |
| 188 | + T_40_59(55, A, B, C, D, E); |
| 189 | + T_40_59(56, E, A, B, C, D); |
| 190 | + T_40_59(57, D, E, A, B, C); |
| 191 | + T_40_59(58, C, D, E, A, B); |
| 192 | + T_40_59(59, B, C, D, E, A); |
| 193 | + |
| 194 | + /* Round 4 */ |
| 195 | + T_60_79(60, A, B, C, D, E); |
| 196 | + T_60_79(61, E, A, B, C, D); |
| 197 | + T_60_79(62, D, E, A, B, C); |
| 198 | + T_60_79(63, C, D, E, A, B); |
| 199 | + T_60_79(64, B, C, D, E, A); |
| 200 | + T_60_79(65, A, B, C, D, E); |
| 201 | + T_60_79(66, E, A, B, C, D); |
| 202 | + T_60_79(67, D, E, A, B, C); |
| 203 | + T_60_79(68, C, D, E, A, B); |
| 204 | + T_60_79(69, B, C, D, E, A); |
| 205 | + T_60_79(70, A, B, C, D, E); |
| 206 | + T_60_79(71, E, A, B, C, D); |
| 207 | + T_60_79(72, D, E, A, B, C); |
| 208 | + T_60_79(73, C, D, E, A, B); |
| 209 | + T_60_79(74, B, C, D, E, A); |
| 210 | + T_60_79(75, A, B, C, D, E); |
| 211 | + T_60_79(76, E, A, B, C, D); |
| 212 | + T_60_79(77, D, E, A, B, C); |
| 213 | + T_60_79(78, C, D, E, A, B); |
| 214 | + T_60_79(79, B, C, D, E, A); |
| 215 | + |
| 216 | + ctx->H[0] += A; |
| 217 | + ctx->H[1] += B; |
| 218 | + ctx->H[2] += C; |
| 219 | + ctx->H[3] += D; |
| 220 | + ctx->H[4] += E; |
| 221 | +} |
| 222 | + |
| 223 | +void blk_SHA1_Init(blk_SHA_CTX *ctx) |
| 224 | +{ |
| 225 | + ctx->size = 0; |
| 226 | + |
| 227 | + /* Initialize H with the magic constants (see FIPS180 for constants) */ |
| 228 | + ctx->H[0] = 0x67452301; |
| 229 | + ctx->H[1] = 0xefcdab89; |
| 230 | + ctx->H[2] = 0x98badcfe; |
| 231 | + ctx->H[3] = 0x10325476; |
| 232 | + ctx->H[4] = 0xc3d2e1f0; |
| 233 | +} |
| 234 | + |
| 235 | +void blk_SHA1_Update(blk_SHA_CTX *ctx, const void *data, unsigned long len) |
| 236 | +{ |
| 237 | + int lenW = ctx->size & 63; |
| 238 | + |
| 239 | + ctx->size += len; |
| 240 | + |
| 241 | + /* Read the data into W and process blocks as they get full */ |
| 242 | + if (lenW) { |
| 243 | + int left = 64 - lenW; |
| 244 | + if (len < left) |
| 245 | + left = len; |
| 246 | + memcpy(lenW + (char *)ctx->W, data, left); |
| 247 | + lenW = (lenW + left) & 63; |
| 248 | + len -= left; |
| 249 | + data = ((const char *)data + left); |
| 250 | + if (lenW) |
| 251 | + return; |
| 252 | + blk_SHA1_Block(ctx, ctx->W); |
| 253 | + } |
| 254 | + while (len >= 64) { |
| 255 | + blk_SHA1_Block(ctx, data); |
| 256 | + data = ((const char *)data + 64); |
| 257 | + len -= 64; |
| 258 | + } |
| 259 | + if (len) |
| 260 | + memcpy(ctx->W, data, len); |
| 261 | +} |
| 262 | + |
| 263 | +void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx) |
| 264 | +{ |
| 265 | + static const unsigned char pad[64] = { 0x80 }; |
| 266 | + unsigned int padlen[2]; |
| 267 | + int i; |
| 268 | + |
| 269 | + /* Pad with a binary 1 (ie 0x80), then zeroes, then length */ |
| 270 | + padlen[0] = htonl(ctx->size >> 29); |
| 271 | + padlen[1] = htonl(ctx->size << 3); |
| 272 | + |
| 273 | + i = ctx->size & 63; |
| 274 | + blk_SHA1_Update(ctx, pad, 1+ (63 & (55 - i))); |
| 275 | + blk_SHA1_Update(ctx, padlen, 8); |
| 276 | + |
| 277 | + /* Output hash */ |
| 278 | + for (i = 0; i < 5; i++) |
| 279 | + put_be32(hashout + i*4, ctx->H[i]); |
| 280 | +} |
0 commit comments