Skip to content

Commit 5aea0f8

Browse files
committed
docs: reduce doc verbosity to increase readability
Signed-off-by: Zack Koppert <zkoppert@github.com>
1 parent 9995d9d commit 5aea0f8

File tree

2 files changed

+37
-337
lines changed

2 files changed

+37
-337
lines changed

ARCHITECTURE.md

Lines changed: 1 addition & 335 deletions
Original file line numberDiff line numberDiff line change
@@ -56,17 +56,6 @@ The InnerSource Measurement Tool is designed to analyze GitHub repositories and
5656
- Handle default values and required parameters
5757
- Support multiple authentication methods
5858

59-
**Key Classes:**
60-
61-
- `EnvVars`: Immutable configuration object
62-
- Helper functions for type conversion and validation
63-
64-
**Design Patterns:**
65-
66-
- Configuration Object Pattern
67-
- Builder Pattern (for environment variable parsing)
68-
- Validation Chain Pattern
69-
7059
### 2. Authentication Manager (`auth.py`)
7160

7261
**Responsibilities:**
@@ -76,16 +65,6 @@ The InnerSource Measurement Tool is designed to analyze GitHub repositories and
7665
- Manage JWT tokens for GitHub App authentication
7766
- Provide unified authentication interface
7867

79-
**Key Functions:**
80-
81-
- `auth_to_github()`: Main authentication orchestrator
82-
- `get_github_app_installation_token()`: JWT token exchange
83-
84-
**Design Patterns:**
85-
86-
- Strategy Pattern (for different authentication methods)
87-
- Factory Pattern (for creating GitHub clients)
88-
8968
### 3. Core Analysis Engine (`measure_innersource.py`)
9069

9170
**Responsibilities:**
@@ -95,19 +74,6 @@ The InnerSource Measurement Tool is designed to analyze GitHub repositories and
9574
- Manage chunked processing for large repositories
9675
- Calculate InnerSource metrics and ratios
9776

98-
**Key Algorithms:**
99-
100-
- Team boundary detection
101-
- Contribution aggregation
102-
- Chunked data processing
103-
- Progress tracking and error handling
104-
105-
**Design Patterns:**
106-
107-
- Pipeline Pattern (for staged processing)
108-
- Iterator Pattern (for chunked processing)
109-
- Observer Pattern (for progress tracking)
110-
11177
### 4. Report Generation (`markdown_writer.py`)
11278

11379
**Responsibilities:**
@@ -117,11 +83,6 @@ The InnerSource Measurement Tool is designed to analyze GitHub repositories and
11783
- Handle edge cases and missing data
11884
- Provide consistent report structure
11985

120-
**Design Patterns:**
121-
122-
- Template Method Pattern
123-
- Null Object Pattern (for handling missing data)
124-
12586
### 5. Utility Functions (`markdown_helpers.py`)
12687

12788
**Responsibilities:**
@@ -130,11 +91,6 @@ The InnerSource Measurement Tool is designed to analyze GitHub repositories and
13091
- Split large files intelligently
13192
- Preserve content integrity during splits
13293

133-
**Design Patterns:**
134-
135-
- Strategy Pattern (for file splitting)
136-
- Utility/Helper Pattern
137-
13894
## Data Flow Architecture
13995

14096
### Processing Pipeline
@@ -215,190 +171,7 @@ The InnerSource Measurement Tool is designed to analyze GitHub repositories and
215171
└─────────────────┘
216172
```
217173

218-
### Data Structures
219-
220-
#### Configuration Data Flow
221-
222-
```python
223-
Environment Variables → EnvVars Object → Component Configuration
224-
225-
Examples:
226-
GH_TOKEN → env_vars.gh_token → auth_to_github(token=...)
227-
REPOSITORY → env_vars.owner, env_vars.repo → github_connection.repository(owner, repo)
228-
CHUNK_SIZE → env_vars.chunk_size → chunked_processing(chunk_size=...)
229-
```
230-
231-
#### Analysis Data Flow
232-
233-
```python
234-
GitHub API → Raw Data → Processed Data → Aggregated Results → Report
235-
236-
Examples:
237-
repo.commits() → commit_list → commit_author_counts → contribution_totals → markdown_report
238-
repo.pull_requests() → pr_list → pr_author_counts → innersource_metrics → formatted_output
239-
repo.issues() → issue_list → issue_author_counts → team_analysis → final_report
240-
```
241-
242-
## Key Algorithms
243-
244-
### Team Boundary Detection Algorithm
245-
246-
The team boundary detection algorithm is central to the tool's functionality:
247-
248-
```python
249-
def detect_team_boundaries(original_author: str, org_data: dict) -> set:
250-
"""
251-
Detect team boundaries using organizational hierarchy
252-
253-
Algorithm:
254-
1. Start with original commit author
255-
2. Add their direct manager
256-
3. Add all peers (people with same manager)
257-
4. Recursively add anyone who reports to team members
258-
5. Continue until no new members are found
259-
"""
260-
team_members = {original_author}
261-
262-
# Add original author's manager
263-
if original_author in org_data:
264-
manager = org_data[original_author]["manager"]
265-
team_members.add(manager)
266-
267-
# Add all peers (same manager)
268-
for user, data in org_data.items():
269-
if data["manager"] == manager:
270-
team_members.add(user)
271-
272-
# Recursive expansion
273-
changed = True
274-
while changed:
275-
changed = False
276-
initial_size = len(team_members)
277-
278-
# Add anyone who reports to current team members
279-
for user, data in org_data.items():
280-
if data["manager"] in team_members:
281-
team_members.add(user)
282-
283-
# Check if we added anyone new
284-
changed = len(team_members) > initial_size
285-
286-
return team_members
287-
```
288-
289-
### Chunked Processing Algorithm
290-
291-
For memory efficiency with large repositories:
292-
293-
```python
294-
def process_in_chunks(iterator, chunk_size: int, processor_func):
295-
"""
296-
Process large datasets in memory-efficient chunks
297-
298-
Benefits:
299-
- Prevents memory overflow
300-
- Provides progress feedback
301-
- Allows for configurable memory usage
302-
- Handles API rate limiting gracefully
303-
"""
304-
results = {}
305-
total_processed = 0
306-
307-
while True:
308-
# Collect chunk
309-
chunk = []
310-
for _ in range(chunk_size):
311-
try:
312-
chunk.append(next(iterator))
313-
except StopIteration:
314-
break
315-
316-
if not chunk:
317-
break
318-
319-
# Process chunk
320-
chunk_results = processor_func(chunk)
321-
322-
# Merge results
323-
for key, value in chunk_results.items():
324-
results[key] = results.get(key, 0) + value
325-
326-
total_processed += len(chunk)
327-
print(f"Processed {total_processed} items...")
328-
329-
return results
330-
```
331-
332-
### Contribution Aggregation Algorithm
333-
334-
```python
335-
def aggregate_contributions(commit_counts, pr_counts, issue_counts):
336-
"""
337-
Aggregate different types of contributions
338-
339-
Combines:
340-
- Commit authorship
341-
- Pull request creation
342-
- Issue creation
343-
344-
Returns unified contribution counts per user
345-
"""
346-
all_users = set(commit_counts.keys()) | set(pr_counts.keys()) | set(issue_counts.keys())
347-
348-
aggregated = {}
349-
for user in all_users:
350-
aggregated[user] = (
351-
commit_counts.get(user, 0) +
352-
pr_counts.get(user, 0) +
353-
issue_counts.get(user, 0)
354-
)
355-
356-
return aggregated
357-
```
358-
359-
## Performance Considerations
360-
361-
### Memory Management
362-
363-
1. **Chunked Processing**: Large datasets are never loaded entirely into memory
364-
2. **Lazy Evaluation**: Use GitHub API iterators instead of loading full lists
365-
3. **Result Streaming**: Process and aggregate results incrementally
366-
4. **Garbage Collection**: Explicitly manage object lifecycles for large datasets
367-
368-
### API Rate Limiting
369-
370-
1. **Authentication Strategy**: Use GitHub App tokens for higher limits (5,000/hour vs 1,000/hour)
371-
2. **Request Batching**: Minimize API calls through efficient query patterns
372-
3. **Respectful Processing**: Honor rate limits and provide backoff mechanisms
373-
4. **Progress Tracking**: Provide feedback during long-running operations
374-
375-
### Scalability Patterns
376-
377-
1. **Horizontal Scaling**: Tool can be run on multiple repositories simultaneously
378-
2. **Configurable Resources**: Chunk size can be adjusted based on available memory
379-
3. **Incremental Processing**: Future enhancement for processing only recent changes
380-
4. **Caching Strategy**: Store intermediate results to avoid reprocessing
381-
382-
## Error Handling Strategy
383-
384-
### Graceful Degradation
385-
386-
```python
387-
def handle_api_errors(func):
388-
"""
389-
Decorator for graceful API error handling
390-
"""
391-
def wrapper(*args, **kwargs):
392-
try:
393-
return func(*args, **kwargs)
394-
except requests.exceptions.RequestException as e:
395-
print(f"API request failed: {e}")
396-
return None
397-
except Exception as e:
398-
print(f"Unexpected error: {e}")
399-
return None
400-
return wrapper
401-
```
174+
## Error Handling
402175

403176
### Error Categories
404177

@@ -408,110 +181,3 @@ def handle_api_errors(func):
408181
4. **Data Errors**: Missing org-data.json or invalid format
409182
5. **Processing Errors**: Unexpected data structures or edge cases
410183

411-
## Testing Strategy
412-
413-
### Test Architecture
414-
415-
```
416-
┌─────────────────────────────────────────────────────────────────┐
417-
│ Test Suite │
418-
│ │
419-
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────┐ │
420-
│ │ Unit │ │ Integration │ │ End-to-End │ │ Edge │ │
421-
│ │ Tests │ │ Tests │ │ Tests │ │ Cases │ │
422-
│ └─────────────┘ └─────────────┘ └─────────────┘ └─────────┘ │
423-
│ │
424-
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────┐ │
425-
│ │Performance │ │ Security │ │ Reliability │ │ Mock │ │
426-
│ │ Tests │ │ Tests │ │ Tests │ │ Tests │ │
427-
│ └─────────────┘ └─────────────┘ └─────────────┘ └─────────┘ │
428-
└─────────────────────────────────────────────────────────────────┘
429-
```
430-
431-
### Test Coverage Strategy
432-
433-
1. **Unit Tests**: Each function and class method
434-
2. **Integration Tests**: Component interactions
435-
3. **Configuration Tests**: Environment variable handling
436-
4. **Mock Tests**: GitHub API interactions
437-
5. **Edge Case Tests**: Empty repositories, missing data, error conditions
438-
439-
## Security Considerations
440-
441-
### Authentication Security
442-
443-
1. **Token Management**: Never log or expose authentication tokens
444-
2. **Permission Principle**: Use minimum required permissions
445-
3. **Token Rotation**: Support for token refresh and rotation
446-
4. **Secure Storage**: Environment variables for sensitive data
447-
448-
### Data Privacy
449-
450-
1. **No Data Persistence**: Tool doesn't store user data beyond processing
451-
2. **Minimal Data Access**: Only accesses necessary repository information
452-
3. **User Privacy**: Respects GitHub's privacy settings and permissions
453-
4. **Audit Trail**: Provides logs for security auditing
454-
455-
## Future Enhancements
456-
457-
### Planned Features
458-
459-
1. **Incremental Processing**: Process only recent changes
460-
2. **Historical Analysis**: Track InnerSource trends over time
461-
3. **Additional Metrics**: More sophisticated collaboration measurements
462-
4. **Multiple Platforms**: Support for GitLab, Bitbucket, etc.
463-
5. **Real-time Processing**: Webhook-based analysis
464-
465-
### Architecture Extensions
466-
467-
1. **Plugin System**: Allow custom analysis algorithms
468-
2. **Database Integration**: Store historical data for trending
469-
3. **API Interface**: REST API for programmatic access
470-
4. **Dashboard UI**: Web interface for visualization
471-
5. **Notification System**: Alerts for significant changes
472-
473-
## Deployment Architecture
474-
475-
### Container Strategy
476-
477-
```dockerfile
478-
# Multi-stage build for optimization
479-
FROM python:3.10-slim as builder
480-
WORKDIR /app
481-
COPY requirements.txt .
482-
RUN pip install --no-cache-dir -r requirements.txt
483-
484-
FROM python:3.10-slim
485-
WORKDIR /app
486-
COPY --from=builder /usr/local/lib/python3.10/site-packages /usr/local/lib/python3.10/site-packages
487-
COPY . .
488-
CMD ["python", "measure_innersource.py"]
489-
```
490-
491-
### GitHub Actions Integration
492-
493-
The tool is designed to run seamlessly in GitHub Actions with:
494-
495-
- Minimal resource requirements
496-
- Efficient processing patterns
497-
- Clear progress reporting
498-
- Graceful error handling
499-
500-
## Monitoring and Observability
501-
502-
### Metrics Collection
503-
504-
1. **Processing Time**: Track analysis duration
505-
2. **Memory Usage**: Monitor resource consumption
506-
3. **API Usage**: Track rate limit consumption
507-
4. **Error Rates**: Monitor failure patterns
508-
5. **Success Metrics**: Track successful analyses
509-
510-
### Logging Strategy
511-
512-
1. **Structured Logging**: JSON format for machine processing
513-
2. **Log Levels**: DEBUG, INFO, WARNING, ERROR
514-
3. **Contextual Information**: Include request IDs and user context
515-
4. **No Sensitive Data**: Sanitize logs of tokens and personal information
516-
517-
This architecture provides a solid foundation for the InnerSource measurement tool while maintaining flexibility for future enhancements and scaling requirements.

0 commit comments

Comments
 (0)