|
16 | 16 | },
|
17 | 17 | {
|
18 | 18 | "cell_type": "code",
|
19 |
| - "execution_count": 1, |
| 19 | + "execution_count": 2, |
20 | 20 | "metadata": {},
|
21 |
| - "outputs": [ |
22 |
| - { |
23 |
| - "name": "stderr", |
24 |
| - "output_type": "stream", |
25 |
| - "text": [ |
26 |
| - "Using TensorFlow backend.\n" |
27 |
| - ] |
28 |
| - } |
29 |
| - ], |
| 21 | + "outputs": [], |
30 | 22 | "source": [
|
31 | 23 | "from collections import Counter\n",
|
32 |
| - "import keras\n", |
| 24 | + "from tensorflow import keras\n", |
33 | 25 | "from keras.datasets import mnist\n",
|
34 | 26 | "from keras.layers import Dense, Dropout\n",
|
35 | 27 | "from keras.models import load_model, Sequential\n",
|
36 | 28 | "from keras.optimizers import SGD\n",
|
37 |
| - "from keras.utils import np_utils\n", |
| 29 | + "from keras.utils import to_categorical\n", |
38 | 30 | "import matplotlib.pyplot as plt\n",
|
39 | 31 | "%matplotlib inline\n",
|
40 | 32 | "import numpy as np\n",
|
|
57 | 49 | },
|
58 | 50 | {
|
59 | 51 | "cell_type": "code",
|
60 |
| - "execution_count": 2, |
| 52 | + "execution_count": 3, |
61 | 53 | "metadata": {},
|
62 | 54 | "outputs": [],
|
63 | 55 | "source": [
|
|
67 | 59 | " x_test = x_test.reshape(10000, 784)\n",
|
68 | 60 | " x_train = x_train.astype(np.float32)/255.0\n",
|
69 | 61 | " x_test = x_test.astype(np.float32)/255.0\n",
|
70 |
| - " y_train = np_utils.to_categorical(y_train)\n", |
71 |
| - " y_test = np_utils.to_categorical(y_test)\n", |
| 62 | + " y_train = to_categorical(y_train)\n", |
| 63 | + " y_test = to_categorical(y_test)\n", |
72 | 64 | " return x_train, y_train, x_test, y_test"
|
73 | 65 | ]
|
74 | 66 | },
|
75 | 67 | {
|
76 | 68 | "cell_type": "code",
|
77 |
| - "execution_count": 3, |
| 69 | + "execution_count": 4, |
78 | 70 | "metadata": {},
|
79 | 71 | "outputs": [],
|
80 | 72 | "source": [
|
|
97 | 89 | },
|
98 | 90 | {
|
99 | 91 | "cell_type": "code",
|
100 |
| - "execution_count": 4, |
| 92 | + "execution_count": 5, |
101 | 93 | "metadata": {},
|
102 | 94 | "outputs": [],
|
103 | 95 | "source": [
|
|
129 | 121 | },
|
130 | 122 | {
|
131 | 123 | "cell_type": "code",
|
132 |
| - "execution_count": 5, |
| 124 | + "execution_count": 6, |
133 | 125 | "metadata": {},
|
134 | 126 | "outputs": [],
|
135 | 127 | "source": [
|
|
145 | 137 | },
|
146 | 138 | {
|
147 | 139 | "cell_type": "code",
|
148 |
| - "execution_count": 6, |
| 140 | + "execution_count": 7, |
149 | 141 | "metadata": {
|
150 | 142 | "scrolled": true
|
151 | 143 | },
|
|
154 | 146 | "name": "stdout",
|
155 | 147 | "output_type": "stream",
|
156 | 148 | "text": [
|
157 |
| - "model 1\n", |
| 149 | + "model 1\n" |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "name": "stderr", |
| 154 | + "output_type": "stream", |
| 155 | + "text": [ |
| 156 | + "2024-03-20 09:54:27.891996: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:887] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node\n", |
| 157 | + "Your kernel may have been built without NUMA support.\n", |
| 158 | + "2024-03-20 09:54:28.321918: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:887] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node\n", |
| 159 | + "Your kernel may have been built without NUMA support.\n", |
| 160 | + "2024-03-20 09:54:28.321969: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:887] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node\n", |
| 161 | + "Your kernel may have been built without NUMA support.\n", |
| 162 | + "2024-03-20 09:54:28.326420: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:887] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node\n", |
| 163 | + "Your kernel may have been built without NUMA support.\n", |
| 164 | + "2024-03-20 09:54:28.326464: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:887] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node\n", |
| 165 | + "Your kernel may have been built without NUMA support.\n", |
| 166 | + "2024-03-20 09:54:28.326487: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:887] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node\n", |
| 167 | + "Your kernel may have been built without NUMA support.\n", |
| 168 | + "2024-03-20 09:54:35.782651: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:887] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node\n", |
| 169 | + "Your kernel may have been built without NUMA support.\n", |
| 170 | + "2024-03-20 09:54:35.783569: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:887] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node\n", |
| 171 | + "Your kernel may have been built without NUMA support.\n", |
| 172 | + "2024-03-20 09:54:35.783589: I tensorflow/core/common_runtime/gpu/gpu_device.cc:2022] Could not identify NUMA node of platform GPU id 0, defaulting to 0. Your kernel may not have been built with NUMA support.\n", |
| 173 | + "2024-03-20 09:54:35.783689: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:887] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node\n", |
| 174 | + "Your kernel may have been built without NUMA support.\n", |
| 175 | + "2024-03-20 09:54:35.784579: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1929] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3421 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3060 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6\n", |
| 176 | + "2024-03-20 09:55:35.800249: I external/local_xla/xla/service/service.cc:168] XLA service 0x7f56bc0020b0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n", |
| 177 | + "2024-03-20 09:55:35.800419: I external/local_xla/xla/service/service.cc:176] StreamExecutor device (0): NVIDIA GeForce RTX 3060 Laptop GPU, Compute Capability 8.6\n", |
| 178 | + "2024-03-20 09:55:37.662907: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:454] Loaded cuDNN version 8907\n", |
| 179 | + "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", |
| 180 | + "I0000 00:00:1710924937.828903 11615 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "name": "stdout", |
| 185 | + "output_type": "stream", |
| 186 | + "text": [ |
158 | 187 | "model 2\n",
|
159 | 188 | "model 3\n"
|
160 | 189 | ]
|
|
188 | 217 | },
|
189 | 218 | {
|
190 | 219 | "cell_type": "code",
|
191 |
| - "execution_count": 7, |
| 220 | + "execution_count": 8, |
192 | 221 | "metadata": {},
|
193 | 222 | "outputs": [
|
194 | 223 | {
|
195 | 224 | "data": {
|
196 | 225 | "text/plain": [
|
197 |
| - "[0.9514, 0.9506, 0.9488]" |
| 226 | + "[0.9503999948501587, 0.9484999775886536, 0.9495999813079834]" |
198 | 227 | ]
|
199 | 228 | },
|
200 |
| - "execution_count": 7, |
| 229 | + "execution_count": 8, |
201 | 230 | "metadata": {},
|
202 | 231 | "output_type": "execute_result"
|
203 | 232 | }
|
|
219 | 248 | },
|
220 | 249 | {
|
221 | 250 | "cell_type": "code",
|
222 |
| - "execution_count": 8, |
| 251 | + "execution_count": 10, |
223 | 252 | "metadata": {},
|
224 |
| - "outputs": [], |
| 253 | + "outputs": [ |
| 254 | + { |
| 255 | + "name": "stdout", |
| 256 | + "output_type": "stream", |
| 257 | + "text": [ |
| 258 | + "313/313 [==============================] - 1s 2ms/step\n", |
| 259 | + "313/313 [==============================] - 1s 2ms/step\n", |
| 260 | + "313/313 [==============================] - 0s 1ms/step\n" |
| 261 | + ] |
| 262 | + } |
| 263 | + ], |
225 | 264 | "source": [
|
226 | 265 | "y_infer = np.empty((len(models), len(y_test)), dtype=np.int64)\n",
|
227 | 266 | "for i, model in enumerate(models):\n",
|
228 |
| - " y_infer[i, :] = model.predict_classes(x_test)" |
| 267 | + " prediction = model.predict(x_test)\n", |
| 268 | + " y_infer[i, :] = np.argmax(prediction, axis=1)" |
229 | 269 | ]
|
230 | 270 | },
|
231 | 271 | {
|
|
237 | 277 | },
|
238 | 278 | {
|
239 | 279 | "cell_type": "code",
|
240 |
| - "execution_count": 9, |
| 280 | + "execution_count": 11, |
241 | 281 | "metadata": {
|
242 | 282 | "scrolled": true
|
243 | 283 | },
|
|
246 | 286 | "name": "stdout",
|
247 | 287 | "output_type": "stream",
|
248 | 288 | "text": [
|
249 |
| - "0.9519\n" |
| 289 | + "0.951\n" |
250 | 290 | ]
|
251 | 291 | }
|
252 | 292 | ],
|
|
285 | 325 | },
|
286 | 326 | {
|
287 | 327 | "cell_type": "code",
|
288 |
| - "execution_count": 15, |
| 328 | + "execution_count": 12, |
289 | 329 | "metadata": {},
|
290 | 330 | "outputs": [],
|
291 | 331 | "source": [
|
|
294 | 334 | },
|
295 | 335 | {
|
296 | 336 | "cell_type": "code",
|
297 |
| - "execution_count": 16, |
| 337 | + "execution_count": 13, |
298 | 338 | "metadata": {},
|
299 | 339 | "outputs": [],
|
300 | 340 | "source": [
|
|
306 | 346 | },
|
307 | 347 | {
|
308 | 348 | "cell_type": "code",
|
309 |
| - "execution_count": 17, |
| 349 | + "execution_count": 14, |
310 | 350 | "metadata": {},
|
311 | 351 | "outputs": [
|
312 | 352 | {
|
313 | 353 | "data": {
|
314 | 354 | "text/plain": [
|
315 |
| - "[0.09286915022358298, 0.9707]" |
| 355 | + "[0.09376676380634308, 0.9704999923706055]" |
316 | 356 | ]
|
317 | 357 | },
|
318 |
| - "execution_count": 17, |
| 358 | + "execution_count": 14, |
319 | 359 | "metadata": {},
|
320 | 360 | "output_type": "execute_result"
|
321 | 361 | }
|
|
334 | 374 | ],
|
335 | 375 | "metadata": {
|
336 | 376 | "kernelspec": {
|
337 |
| - "display_name": "Python 3", |
| 377 | + "display_name": "Python 3 (ipykernel)", |
338 | 378 | "language": "python",
|
339 | 379 | "name": "python3"
|
340 | 380 | },
|
|
348 | 388 | "name": "python",
|
349 | 389 | "nbconvert_exporter": "python",
|
350 | 390 | "pygments_lexer": "ipython3",
|
351 |
| - "version": "3.6.6" |
| 391 | + "version": "3.11.8" |
352 | 392 | }
|
353 | 393 | },
|
354 | 394 | "nbformat": 4,
|
355 |
| - "nbformat_minor": 2 |
| 395 | + "nbformat_minor": 4 |
356 | 396 | }
|
0 commit comments