|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "dad1f0e2-bc13-4d67-b40e-e5f8946e7e6f", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Requirements" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": 1, |
| 14 | + "id": "694413b5-380c-4239-8bce-09b90df7fe79", |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "from numba import njit\n", |
| 19 | + "import numpy as np\n", |
| 20 | + "import random" |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "markdown", |
| 25 | + "id": "aee5369d-7b69-4fb4-8567-52bd8e92571b", |
| 26 | + "metadata": {}, |
| 27 | + "source": [ |
| 28 | + "# Random $\\pi$" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "markdown", |
| 33 | + "id": "70202ae4-ad82-4c91-aea0-a3aeccfb7bdc", |
| 34 | + "metadata": {}, |
| 35 | + "source": [ |
| 36 | + "Compute $\\pi$ by generating random points in a square and counting how many there are in the circle inscribed in the square." |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": 5, |
| 42 | + "id": "b5f095c0-58f6-4098-829c-6e696ae2a2bd", |
| 43 | + "metadata": {}, |
| 44 | + "outputs": [], |
| 45 | + "source": [ |
| 46 | + "def compute_pi(nr_tries):\n", |
| 47 | + " hits = 0\n", |
| 48 | + " for _ in range(nr_tries):\n", |
| 49 | + " x = random.random()\n", |
| 50 | + " y = random.random()\n", |
| 51 | + " if x**2 + y**2 < 1.0:\n", |
| 52 | + " hits += 1\n", |
| 53 | + " return 4.0*hits/nr_tries" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "code", |
| 58 | + "execution_count": 6, |
| 59 | + "id": "805f4c9f-5d19-486a-988e-bf103683c37c", |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [], |
| 62 | + "source": [ |
| 63 | + "@njit\n", |
| 64 | + "def compute_pi_jit(nr_tries):\n", |
| 65 | + " hits = 0\n", |
| 66 | + " for _ in range(nr_tries):\n", |
| 67 | + " x = random.random()\n", |
| 68 | + " y = random.random()\n", |
| 69 | + " if x**2 + y**2 < 1.0:\n", |
| 70 | + " hits += 1\n", |
| 71 | + " return 4.0*hits/nr_tries" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": 32, |
| 77 | + "id": "f7a7bb7e-6ad1-4b6d-bb5b-d99ebedf7991", |
| 78 | + "metadata": {}, |
| 79 | + "outputs": [], |
| 80 | + "source": [ |
| 81 | + "@njit(['float64(int64)'])\n", |
| 82 | + "def compute_pi_jit_sign(nr_tries):\n", |
| 83 | + " hits = 0\n", |
| 84 | + " for _ in range(nr_tries):\n", |
| 85 | + " x = random.random()\n", |
| 86 | + " y = random.random()\n", |
| 87 | + " if x**2 + y**2 < 1.0:\n", |
| 88 | + " hits += 1\n", |
| 89 | + " return 4.0*hits/nr_tries" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "code", |
| 94 | + "execution_count": 9, |
| 95 | + "id": "13f3c23d-674e-43b2-b503-a83c20cf5075", |
| 96 | + "metadata": {}, |
| 97 | + "outputs": [ |
| 98 | + { |
| 99 | + "name": "stdout", |
| 100 | + "output_type": "stream", |
| 101 | + "text": [ |
| 102 | + "27.1 ms ± 277 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" |
| 103 | + ] |
| 104 | + } |
| 105 | + ], |
| 106 | + "source": [ |
| 107 | + "%timeit compute_pi(100_000)" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": 10, |
| 113 | + "id": "de965fa5-b3e3-4548-8d41-661baf6abe65", |
| 114 | + "metadata": {}, |
| 115 | + "outputs": [ |
| 116 | + { |
| 117 | + "name": "stdout", |
| 118 | + "output_type": "stream", |
| 119 | + "text": [ |
| 120 | + "687 µs ± 9.53 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" |
| 121 | + ] |
| 122 | + } |
| 123 | + ], |
| 124 | + "source": [ |
| 125 | + "%timeit compute_pi_jit(100_000)" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "code", |
| 130 | + "execution_count": 34, |
| 131 | + "id": "f240d35d-2fdb-45db-9e59-d392887c9a16", |
| 132 | + "metadata": {}, |
| 133 | + "outputs": [ |
| 134 | + { |
| 135 | + "name": "stdout", |
| 136 | + "output_type": "stream", |
| 137 | + "text": [ |
| 138 | + "685 µs ± 8.96 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" |
| 139 | + ] |
| 140 | + } |
| 141 | + ], |
| 142 | + "source": [ |
| 143 | + "%timeit compute_pi_jit_sign(np.int64(100_000))" |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "cell_type": "markdown", |
| 148 | + "id": "da96c2f7-afc2-4122-ad80-62d7c57272e9", |
| 149 | + "metadata": {}, |
| 150 | + "source": [ |
| 151 | + "Using numba's just-in-time compiler significantly speeds up the computations." |
| 152 | + ] |
| 153 | + } |
| 154 | + ], |
| 155 | + "metadata": { |
| 156 | + "kernelspec": { |
| 157 | + "display_name": "Python 3 (ipykernel)", |
| 158 | + "language": "python", |
| 159 | + "name": "python3" |
| 160 | + }, |
| 161 | + "language_info": { |
| 162 | + "codemirror_mode": { |
| 163 | + "name": "ipython", |
| 164 | + "version": 3 |
| 165 | + }, |
| 166 | + "file_extension": ".py", |
| 167 | + "mimetype": "text/x-python", |
| 168 | + "name": "python", |
| 169 | + "nbconvert_exporter": "python", |
| 170 | + "pygments_lexer": "ipython3", |
| 171 | + "version": "3.9.7" |
| 172 | + } |
| 173 | + }, |
| 174 | + "nbformat": 4, |
| 175 | + "nbformat_minor": 5 |
| 176 | +} |
0 commit comments