|
| 1 | +#define CATCH_CONFIG_MAIN |
| 2 | +#include <catch2/catch.hpp> |
1 | 3 | #include <convolution.h>
|
2 |
| -#include <iostream> |
3 |
| - |
4 |
| -int main() { |
5 |
| - // Create a 10x10 image |
6 |
| - Matrix image(10, 10); |
7 |
| - for (int i = 0; i < image.rows(); ++i) { |
8 |
| - for (int j = 0; j < image.cols(); ++j) { |
9 |
| - image(i, j) = 1.0; |
| 4 | + |
| 5 | +TEST_CASE("3x3 kernel", "[convolution]") { |
| 6 | + const int input_size {5}; |
| 7 | + const int kernel_size {3}; |
| 8 | + |
| 9 | + Matrix input(input_size, input_size); |
| 10 | + for (int i = 0; i < input.rows(); ++i) { |
| 11 | + for (int j = 0; j < input.cols(); ++j) { |
| 12 | + input(i, j) = 1.0; |
10 | 13 | }
|
11 | 14 | }
|
12 | 15 |
|
13 |
| - // Print the image |
14 |
| - std::cout << image << std::endl; |
| 16 | + Matrix kernel(kernel_size, kernel_size); |
| 17 | + for (int i = 0; i < kernel.rows(); ++i) { |
| 18 | + for (int j = 0; j < kernel.cols(); ++j) { |
| 19 | + kernel(i, j) = 1.0; |
| 20 | + } |
| 21 | + } |
15 | 22 |
|
16 |
| - // Create a 3x3 kernel |
17 |
| - Matrix kernel(3, 3); |
| 23 | + Matrix target(input_size, input_size); |
| 24 | + target(0, 0) = 4.0; |
| 25 | + target(0, 1) = 6.0; |
| 26 | + target(0, 2) = 6.0; |
| 27 | + target(0, 3) = 6.0; |
| 28 | + target(0, 4) = 4.0; |
| 29 | + target(1, 0) = 6.0; |
| 30 | + target(1, 1) = 9.0; |
| 31 | + target(1, 2) = 9.0; |
| 32 | + target(1, 3) = 9.0; |
| 33 | + target(1, 4) = 6.0; |
| 34 | + target(2, 0) = 6.0; |
| 35 | + target(2, 1) = 9.0; |
| 36 | + target(2, 2) = 9.0; |
| 37 | + target(2, 3) = 9.0; |
| 38 | + target(2, 4) = 6.0; |
| 39 | + target(3, 0) = 6.0; |
| 40 | + target(3, 1) = 9.0; |
| 41 | + target(3, 2) = 9.0; |
| 42 | + target(3, 3) = 9.0; |
| 43 | + target(3, 4) = 6.0; |
| 44 | + target(4, 0) = 4.0; |
| 45 | + target(4, 1) = 6.0; |
| 46 | + target(4, 2) = 6.0; |
| 47 | + target(4, 3) = 6.0; |
| 48 | + target(4, 4) = 4.0; |
| 49 | + |
| 50 | + auto result = convolve(input, kernel); |
| 51 | + |
| 52 | + REQUIRE(result == target); |
| 53 | +} |
| 54 | + |
| 55 | +TEST_CASE("5x5 kernel", "[convolution]") { |
| 56 | + const int input_size {6}; |
| 57 | + const int kernel_size {5}; |
| 58 | + |
| 59 | + Matrix input(input_size, input_size); |
| 60 | + for (int i = 0; i < input.rows(); ++i) { |
| 61 | + for (int j = 0; j < input.cols(); ++j) { |
| 62 | + input(i, j) = 1.0; |
| 63 | + } |
| 64 | + } |
| 65 | + |
| 66 | + Matrix kernel(kernel_size, kernel_size); |
18 | 67 | for (int i = 0; i < kernel.rows(); ++i) {
|
19 | 68 | for (int j = 0; j < kernel.cols(); ++j) {
|
20 | 69 | kernel(i, j) = 1.0;
|
21 | 70 | }
|
22 | 71 | }
|
23 | 72 |
|
24 |
| - // Print the kernel |
25 |
| - std::cout << kernel << std::endl; |
| 73 | + Matrix target(input_size, input_size); |
| 74 | + target(0, 0) = 9.0; |
| 75 | + target(0, 1) = 12.0; |
| 76 | + target(0, 2) = 15.0; |
| 77 | + target(0, 3) = 15.0; |
| 78 | + target(0, 4) = 12.0; |
| 79 | + target(0, 5) = 9.0; |
| 80 | + target(1, 0) = 12.0; |
| 81 | + target(1, 1) = 16.0; |
| 82 | + target(1, 2) = 20.0; |
| 83 | + target(1, 3) = 20.0; |
| 84 | + target(1, 4) = 16.0; |
| 85 | + target(1, 5) = 12.0; |
| 86 | + target(2, 0) = 15.0; |
| 87 | + target(2, 1) = 20.0; |
| 88 | + target(2, 2) = 25.0; |
| 89 | + target(2, 3) = 25.0; |
| 90 | + target(2, 4) = 20.0; |
| 91 | + target(2, 5) = 15.0; |
| 92 | + target(3, 0) = 15.0; |
| 93 | + target(3, 1) = 20.0; |
| 94 | + target(3, 2) = 25.0; |
| 95 | + target(3, 3) = 25.0; |
| 96 | + target(3, 4) = 20.0; |
| 97 | + target(3, 5) = 15.0; |
| 98 | + target(4, 0) = 12.0; |
| 99 | + target(4, 1) = 16.0; |
| 100 | + target(4, 2) = 20.0; |
| 101 | + target(4, 3) = 20.0; |
| 102 | + target(4, 4) = 16.0; |
| 103 | + target(4, 5) = 12.0; |
| 104 | + target(5, 0) = 9.0; |
| 105 | + target(5, 1) = 12.0; |
| 106 | + target(5, 2) = 15.0; |
| 107 | + target(5, 3) = 15.0; |
| 108 | + target(5, 4) = 12.0; |
| 109 | + target(5, 5) = 9.0; |
| 110 | + auto result = convolve(input, kernel); |
| 111 | + |
| 112 | + REQUIRE(result == target); |
| 113 | +} |
26 | 114 |
|
27 |
| - // Create a convolution object |
28 |
| - auto new_image = convolve(image, kernel); |
| 115 | +TEST_CASE("even-sized kernel error", "[convolution]") { |
| 116 | + const int input_size {5}; |
| 117 | + const int kernel_size {4}; |
29 | 118 |
|
30 |
| - // Print the result |
31 |
| - std::cout << new_image << std::endl; |
| 119 | + Matrix input(input_size, input_size); |
| 120 | + for (int i = 0; i < input.rows(); ++i) { |
| 121 | + for (int j = 0; j < input.cols(); ++j) { |
| 122 | + input(i, j) = 1.0; |
| 123 | + } |
| 124 | + } |
32 | 125 |
|
33 |
| - return 0; |
| 126 | + Matrix kernel(kernel_size, kernel_size); |
| 127 | + for (int i = 0; i < kernel.rows(); ++i) { |
| 128 | + for (int j = 0; j < kernel.cols(); ++j) { |
| 129 | + kernel(i, j) = 1.0; |
| 130 | + } |
| 131 | + } |
| 132 | + REQUIRE_THROWS_AS(convolve(input, kernel), std::invalid_argument); |
34 | 133 | }
|
| 134 | + |
0 commit comments