@@ -747,17 +747,22 @@ def collate_fn(examples):
747747 )
748748
749749 # Scheduler and math around the number of training steps.
750- overrode_max_train_steps = False
751- num_update_steps_per_epoch = math . ceil ( len ( train_dataloader ) / args . gradient_accumulation_steps )
750+ # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
751+ num_warmup_steps_for_scheduler = args . lr_warmup_steps * accelerator . num_processes
752752 if args .max_train_steps is None :
753- args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
754- overrode_max_train_steps = True
753+ len_train_dataloader_after_sharding = math .ceil (len (train_dataloader ) / accelerator .num_processes )
754+ num_update_steps_per_epoch = math .ceil (len_train_dataloader_after_sharding / args .gradient_accumulation_steps )
755+ num_training_steps_for_scheduler = (
756+ args .num_train_epochs * num_update_steps_per_epoch * accelerator .num_processes
757+ )
758+ else :
759+ num_training_steps_for_scheduler = args .max_train_steps * accelerator .num_processes
755760
756761 lr_scheduler = get_scheduler (
757762 args .lr_scheduler ,
758763 optimizer = optimizer ,
759- num_warmup_steps = args . lr_warmup_steps * accelerator . num_processes ,
760- num_training_steps = args . max_train_steps * accelerator . num_processes ,
764+ num_warmup_steps = num_warmup_steps_for_scheduler ,
765+ num_training_steps = num_training_steps_for_scheduler ,
761766 )
762767
763768 # Prepare everything with our `accelerator`.
@@ -782,8 +787,14 @@ def collate_fn(examples):
782787
783788 # We need to recalculate our total training steps as the size of the training dataloader may have changed.
784789 num_update_steps_per_epoch = math .ceil (len (train_dataloader ) / args .gradient_accumulation_steps )
785- if overrode_max_train_steps :
790+ if args . max_train_steps is None :
786791 args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
792+ if num_training_steps_for_scheduler != args .max_train_steps * accelerator .num_processes :
793+ logger .warning (
794+ f"The length of the 'train_dataloader' after 'accelerator.prepare' ({ len (train_dataloader )} ) does not match "
795+ f"the expected length ({ len_train_dataloader_after_sharding } ) when the learning rate scheduler was created. "
796+ f"This inconsistency may result in the learning rate scheduler not functioning properly."
797+ )
787798 # Afterwards we recalculate our number of training epochs
788799 args .num_train_epochs = math .ceil (args .max_train_steps / num_update_steps_per_epoch )
789800
0 commit comments