@@ -365,7 +365,9 @@ def convert_batchnorm(params, w_name, scope_name, inputs, layers, weights):
365
365
layers [scope_name ] = bn (layers [inputs [0 ]])
366
366
367
367
368
- def convert_elementwise_add (params , w_name , scope_name , inputs , layers , weights ):
368
+ def convert_elementwise_add (
369
+ params , w_name , scope_name , inputs , layers , weights
370
+ ):
369
371
"""
370
372
Convert elementwise addition.
371
373
@@ -387,7 +389,9 @@ def convert_elementwise_add(params, w_name, scope_name, inputs, layers, weights)
387
389
layers [scope_name ] = add ([model0 , model1 ])
388
390
389
391
390
- def convert_elementwise_mul (params , w_name , scope_name , inputs , layers , weights ):
392
+ def convert_elementwise_mul (
393
+ params , w_name , scope_name , inputs , layers , weights
394
+ ):
391
395
"""
392
396
Convert elementwise multiplication.
393
397
@@ -409,7 +413,9 @@ def convert_elementwise_mul(params, w_name, scope_name, inputs, layers, weights)
409
413
layers [scope_name ] = mul ([model0 , model1 ])
410
414
411
415
412
- def convert_elementwise_sub (params , w_name , scope_name , inputs , layers , weights ):
416
+ def convert_elementwise_sub (
417
+ params , w_name , scope_name , inputs , layers , weights
418
+ ):
413
419
"""
414
420
Convert elementwise subtraction.
415
421
@@ -445,7 +451,6 @@ def convert_concat(params, w_name, scope_name, inputs, layers, weights):
445
451
"""
446
452
print ('Converting concat ...' )
447
453
concat_nodes = [layers [i ] for i in inputs ]
448
- print (concat_nodes )
449
454
tf_name = w_name + str (random .random ())
450
455
cat = keras .layers .Concatenate (name = tf_name , axis = params ['axis' ])
451
456
layers [scope_name ] = cat (concat_nodes )
0 commit comments