@@ -61,7 +61,6 @@ def convert_conv(params, w_name, scope_name, inputs, layers, weights, short_name
61
61
layers [padding_name ] = padding_layer (layers [input_name ])
62
62
input_name = padding_name
63
63
64
- weights = None
65
64
if has_bias :
66
65
weights = [W , biases ]
67
66
else :
@@ -84,7 +83,7 @@ def convert_conv(params, w_name, scope_name, inputs, layers, weights, short_name
84
83
name = tf_name
85
84
)
86
85
layers [scope_name ] = conv (layers [input_name ])
87
- elif len (weights [weights_name ].numpy ().shape ) == 4 : # 2D conv
86
+ elif len (weights [weights_name ].numpy ().shape ) == 4 : # 2D conv
88
87
W = weights [weights_name ].numpy ().transpose (2 , 3 , 1 , 0 )
89
88
height , width , channels , n_filters = W .shape
90
89
@@ -104,7 +103,6 @@ def convert_conv(params, w_name, scope_name, inputs, layers, weights, short_name
104
103
layers [padding_name ] = padding_layer (layers [input_name ])
105
104
input_name = padding_name
106
105
107
- weights = None
108
106
if has_bias :
109
107
weights = [W , biases ]
110
108
else :
@@ -122,7 +120,7 @@ def convert_conv(params, w_name, scope_name, inputs, layers, weights, short_name
122
120
name = tf_name
123
121
)
124
122
layers [scope_name ] = conv (layers [input_name ])
125
- else : # 1D conv
123
+ else : # 1D conv
126
124
W = weights [weights_name ].numpy ().transpose (2 , 1 , 0 )
127
125
width , channels , n_filters = W .shape
128
126
@@ -141,7 +139,6 @@ def convert_conv(params, w_name, scope_name, inputs, layers, weights, short_name
141
139
layers [padding_name ] = padding_layer (layers [inputs [0 ]])
142
140
input_name = padding_name
143
141
144
- weights = None
145
142
if has_bias :
146
143
weights = [W , biases ]
147
144
else :
@@ -200,7 +197,6 @@ def convert_convtranspose(params, w_name, scope_name, inputs, layers, weights, s
200
197
201
198
input_name = inputs [0 ]
202
199
203
- weights = None
204
200
if has_bias :
205
201
weights = [W , biases ]
206
202
else :
@@ -835,7 +831,6 @@ def convert_reshape(params, w_name, scope_name, inputs, layers, weights, short_n
835
831
short_names: use short names for keras layers
836
832
"""
837
833
print ('Converting reshape ...' )
838
-
839
834
if short_names :
840
835
tf_name = 'RESH' + random_string (4 )
841
836
else :
0 commit comments