-
Notifications
You must be signed in to change notification settings - Fork 122
Open
Labels
type:quantizationFor issues related to quantizationFor issues related to quantizationtype:supportFor use-related issuesFor use-related issues
Description
For specific quantitative issue content, please refer to the following link
google-ai-edge/litert-samples#53 (comment)
In addition, I also referred to Quantization in docs/pytorch_converter/README.md
content,
from torch.ao.quantization.quantize_pt2e import prepare_pt2e, convert_pt2e
from torch._export import capture_pre_autograd_graph
from ai_edge_torch.quantize.pt2e_quantizer import get_symmetric_quantization_config
from ai_edge_torch.quantize.pt2e_quantizer import PT2EQantizer
from ai_edge_torch.quantize.quant_config import QuantConfig
pt2e_quantizer = PT2EQantizer().set_global(
get_symmetric_quantization_config(is_per_channel=True, is_dynamic=True)
)
pt2e_torch_model = capture_pre_autograd_graph(torch_model, sample_args)
pt2e_torch_model = prepare_pt2e(pt2e_torch_model, pt2e_quantizer)
# Run the prepared model with sample input data to ensure that internal observers are populated with correct values
pt2e_torch_model(*sample_args)
# Convert the prepared model to a quantized model
pt2e_torch_model = convert_pt2e(pt2e_torch_model, fold_quantize=False)
# Convert to an ai_edge_torch model
pt2e_drq_model = ai_edge_torch.convert(pt2e_torch_model, sample_args, quant_config=QuantConfig(pt2e_quantizer=pt2e_quantizer))
Found from torch.ao.quantization.quantize_pt2e import prepare_pt2e, convert_pt2e
prepare_pt2e in from torch._export import capture_pre_autograd_graph, convert_pt2e has been removed, and capture_pre_autograd_graph does not find this library
Metadata
Metadata
Assignees
Labels
type:quantizationFor issues related to quantizationFor issues related to quantizationtype:supportFor use-related issuesFor use-related issues